首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2941篇
  免费   120篇
  国内免费   2篇
  3063篇
  2023年   6篇
  2022年   25篇
  2021年   46篇
  2020年   27篇
  2019年   37篇
  2018年   65篇
  2017年   47篇
  2016年   51篇
  2015年   129篇
  2014年   132篇
  2013年   228篇
  2012年   200篇
  2011年   238篇
  2010年   115篇
  2009年   128篇
  2008年   190篇
  2007年   181篇
  2006年   148篇
  2005年   180篇
  2004年   185篇
  2003年   161篇
  2002年   142篇
  2001年   19篇
  2000年   15篇
  1999年   23篇
  1998年   44篇
  1997年   38篇
  1996年   22篇
  1995年   22篇
  1994年   21篇
  1993年   18篇
  1992年   19篇
  1991年   16篇
  1990年   14篇
  1989年   18篇
  1988年   5篇
  1987年   19篇
  1986年   5篇
  1985年   6篇
  1984年   15篇
  1983年   9篇
  1982年   6篇
  1981年   9篇
  1980年   8篇
  1979年   3篇
  1977年   7篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
排序方式: 共有3063条查询结果,搜索用时 15 毫秒
81.
By co-expression of heme oxygenase and various bilin reductase(s) in a single operon in conjunction with apophytochrome using two compatible plasmids, we developed a system to produce phytochromes with various chromophores in Escherichia coli. Through the selection of different bilin reductases, apophytochromes were assembled with phytochromobilin, phycocyanobilin, and phycoerythrobilin. The blue-shifted difference spectra of truncated phytochromes were observed with a phycocyanobilin chromophore compared to a phytochromobilin chromophore. When the phycoerythrobilin biosynthetic enzymes were co-expressed, E. coli cells accumulated orange-fluorescent phytochrome. The metabolic engineering of bacteria for the production of various bilins for assembly into phytochromes will facilitate the molecular analysis of photoreceptors.  相似文献   
82.
Growing evidence suggests that endocytic dysfunction is intimately involved in early stage Alzheimer disease pathology, such as the accumulation of β-amyloid precursor protein in enlarged early endosomes. However, it remains unclear how endocytic dysfunction is induced in an age-dependent manner. Cytoplasmic dynein, a microtubule-based motor protein, interacts with another microtubule-associated protein, dynactin. The resulting dynein-dynactin complex mediates minus end-directed vesicle transport, including endosome trafficking. We have previously shown that the interaction between dynein-dynactin complexes is clearly attenuated in aged monkey brains, suggesting that dynein-mediated transport dysfunction exists in aged brains. Our immunohistochemical analyses revealed that age-dependent endocytic pathology was accompanied by an increase in Rab GTPases in aged monkey brains. Here, we demonstrated that siRNA-induced dynein dysfunction reproduced the endocytic pathology accompanied by increased Rab GTPases seen in aged monkey brains and significantly disrupted exosome release. Moreover, it also resulted in endosomal β-amyloid precursor protein accumulation characterized by increased β-site cleavage. These findings suggest that dynein dysfunction may underlie age-dependent endocytic dysfunction via the up-regulation of Rab GTPases. In addition, this vicious circle may worsen endocytic dysfunction, ultimately leading to Alzheimer disease pathology.  相似文献   
83.
The effect of thalidomide on epidermal growth factor (EGF)-induced cell growth was examined. Thalidomide inhibited EGF-induced cell growth in mouse and human monocytic leukemia cells, RAW 264.7, U937 and THP-1. Thalidomide inhibited EGF-induced phosphorylation of extracellular signal regulated kinase (ERK) 1/2, but not p38 and stress-activated protein kinase (SAPK)/JNK. The phosphorylation of MEK1/2 and Raf at Ser 338 as the upstream molecules of ERK 1/2 was also prevented by thalidomide. Further, it inhibited EGF-induced Ras activation through preventing the transition to GTP-bound active Ras. Thalidomide inhibited the Ras activation induced by lipopolysaccharide (LPS) and vascular endothelial growth factor (VEGF) as well as EGF. There was no significant difference in the expression and function of EGF receptor between thalidomide-treated and non-treated cells. Therefore, thalidomide was suggested to inhibit EGF-induced cell growth via inactivation of Ras.  相似文献   
84.
Five triterpenoid saponins isolated from the flowers, the mature fruits and the leaves of Fatsia japonica were identified as 3-O-[β-d-glucopyranosyl(1→4)-β-d-glucopyranosyl]-hederagenin (1), 3-O-[β-d-glucopyranosyl-(1→4)-α-l-arabinopyranosyl]-oleanolic acid (2), 3-O-[α-l-arabinopyranosyl]-hederagenin (3), 3-O-[β-d-glucopyranosyl]-hederagenin (4) and 3-O-[β-d-glucopyranosyl(1→4)-α-l-arabinopyranosyl]-hederagenin (5). The saponins 1 and 2 are new, naturally occurring, triterpenoid saponins. The distribution of the five saponins in three parts of the plant was investigated. Saponins 2, 3 and 5 were present in the flowers, saponins 1, 3, 4 and 5 were in the mature fruits and saponins 2, 3, 4 and 5 were in the leaves.  相似文献   
85.
In this study, we showed that adrenocorticotropic hormone (ACTH) promoted erythroblast differentiation and increased the enucleation ratio of erythroblasts. Because ACTH was contained in hematopoietic medium as contamination, the ratio decreased by the addition of anti-ACTH antibody (Ab). Addition of neutralizing Abs (nAbs) for melanocortin receptors (MCRs) caused erythroblast accumulation at specific stages, i.e., the addition of anti-MC2R nAb led to erythroblast accumulation at the basophilic stage (baso-E), the addition of anti-MC1R nAb caused accumulation at the polychromatic stage (poly-E), and the addition of anti-MC5R nAb caused accumulation at the orthochromatic stage (ortho-E). During erythroblast differentiation, ERK, STAT5, and AKT were consecutively phosphorylated by erythropoietin (EPO). ERK, STAT5, and AKT phosphorylation was inhibited by blocking MC2R, MC1R, and MC5R, respectively. Finally, the phosphorylation of myosin light chain 2, which is essential for the formation of contractile actomyosin rings, was inhibited by anti-MC5R nAb. Taken together, our study suggests that MC2R and MC1R signals are consecutively required for the regulation of EPO signal transduction in erythroblast differentiation, and that MC5R signal transduction is required to induce enucleation. Thus, melanocortin induces proliferation and differentiation at baso-E, and polarization and formation of an actomyosin contractile ring at ortho-E are required for enucleation.  相似文献   
86.
87.
BACKGROUND: It has been thought that intramuscular ADP and phosphocreatine (PCr) concentrations are important regulators of mitochondorial respiration. There is a threshold work rate or metabolic rate for cellular acidosis, and the decrease in muscle PCr is accelerated with drop in pH during incremental exercise. We tested the hypothesis that increase in muscle oxygen consumption (o2mus) is accelerated with rapid decrease in PCr (concomitant increase in ADP) in muscles with drop in pH occurs during incremental plantar flexion exercise. METHODS: Five male subjects performed a repetitive intermittent isometric plantar flexion exercise (6-s contraction/4-s relaxation). Exercise intensity was raised every 1 min by 10% maximal voluntary contraction (MVC), starting at 10% MVC until exhaustion. The measurement site was at the medial head of the gastrocnemius muscle. Changes in muscle PCr, inorganic phosphate (Pi), ADP, and pH were measured by 31P-magnetic resonance spectroscopy. o2mus was determined from the rate of decrease in oxygenated hemoglobin and/or myoglobin using near-infrared continuous wave spectroscopy under transient arterial occlusion. Electromyogram (EMG) was also recorded. Pulmonary oxygen uptake (o2pul ) was measured by the breath-by-breath gas analysis. RESULTS: EMG amplitude increased as exercise intensity progressed. In contrast, muscle PCr, ADP, o2mus, and o2pul did not change appreciably below 40% MVC, whereas above 40% MVC muscle PCr decreased, and ADP, o2mus, and o2pul increased as exercise intensity progressed, and above 70% MVC, changes in muscle PCr, ADP, o2mus, and o2pul accelerated with the decrease in muscle pH (~6.78). The kinetics of muscle PCr, ADP, o2mus, and o2pul were similar, and there was a close correlation between each pair of parameters (r = 0.969~0.983, p < 0.001). CONCLUSION: With decrease in pH muscle oxidative metabolism accelerated and changes in intramuscular PCr and ADP accelerated during incremental intermittent isometric plantar flexion exercise. These results suggest that rapid changes in muscle PCr and/or ADP with mild acidosis stimulate accelerative muscle oxidative metabolism.  相似文献   
88.
This study investigated the respiratory properties and the role of the mitochondria isolated from one phosphoenolpyruvate carboxykinase (PCK)-CAM plant, Hoya carnosa, in malate metabolism during CAM phase III. The mitochondria showed high malate dehydrogenase (mMDH) and aspartate amino transferase (mAST), and a significant amount of malic enzyme (mME) activities. H. carnosa readily oxidized malate via mME and mMDH in the presence of some cofactors such as thiamine pyrophosphate (TPP), coenzyme A (CoA) or NAD(+). A high respiration rate of malate oxidation was observed at pH 7.2 with NAD(+) and glutamate (Glu). Providing AST and Glu simultaneously into the respiratory medium strongly increased the rates of malate oxidation, and this oxidation was gradually inhibited by an inhibitor of alpha-ketoglutarate (alpha-KG) carrier, pyridoxal-5'-phosphate (PLP). The mitochondria readily oxidized aspartate (Asp) or alpha-KG individually with low rates, while they oxidized Asp and alpha-KG simultaneously with high rates, and this simultaneous oxidation was also inhibited by PLP. By measuring the capacity of the mitochondrial shuttle, it was found that the OAA produced via mMDH seemed not to be transported outside the mitochondria, but mAST interconverted OAA and Glu to Asp and alpha-KG, respectively, and exported them out via a malate-aspartate (malate-Asp) shuttle. The data in this research suggest that during phase III of PCK-CAM, H. carnosa mitochondria oxidized malate via both mME and the mMDH systems depending on metabolic requirements. However, malate metabolism by the mMDH system did not operate via a malate-OAA shuttle similarly to Ananas comosus mitochondria, but it operated via a malate-Asp shuttle similarly to Kalancho? daigremontiana mitochondria.  相似文献   
89.
The absolute configuration at C-12 of pittosporatobiraside A and B isolated from the leaves of Pittosporum tobira was determined to be S on the basis of the exciton chirality of their dibenzoate derivative. The structures of the two glycosides were thus established to be (1S,9S,10S,11S,12S,14R,16R)-12-[(Z)-2-methyl-1-oxo-2-butenyl]-6,14-dimethyl-2-methylene-9-(1-methylethyl)-15,17-dioxatricyclo[8.7.0.011,16]heptadec-5-en-13-one and (1S,9S,10S,11S,12S,14R,16R)-12-(3-methyl-1-oxo-2-butenyl)-6,14-dimethyl-2-methylene-9-(1-methylethyl)-15,17-dioxatricyclo [8.7.0.011,16]heptadec-5-en-13-one, respectively.  相似文献   
90.
When leaves of Vicia faba were treated with H2O2 or visiblelight in the presence of methyl viologen (MV), the orange-redcompound dopachrome was formed transiently and melanin was accumulated.With the darkening of leaves, the level of 3,4-dihydroxyphenylalanine(DOPA) decreased and then recovered to the original level uponaddition of 1 mM H2O2. However, if leaves were incubated inthe presence of 10 mM H2O2, the level of DOPA decreased againafter the increase. The time course of the changes in levelsof DOPA observed during the accumulation of melanin as a resultof illumination in the presence of MV was very similar to thatobserved after the addition of 10 mM H2O2. Illumination of leavesin the absence of MV did not result in any accumulation of melanin,but the level of DOPA changed slightly. When isolated mesophyllcells were incubated in the dark, the level of DOPA decreased.Illumination of the cells stimulated this decrease. Tropolone,an inhibitor of phenol oxidase, did not inhibit and actuallystimulated the H2O2- and light-induced oxidation of DOPA andaccumulation of melanin in leaves. Tropolone also stimulatedthe decrease in the levels of DOPA both in the dark and in thelight in isolated mesophyll cells. These data suggest that aperoxidase-H2O2 system, and not phenol oxidase, participatesin the oxidation of DOPA. When DOPA was oxidized by a basicperoxidase isolated from V.faba leaves, an intermediate, whichwas perhaps dopaquinone and which was reducible by ascorbate,was formed. Based on the data, a discussion is presented ofthe physiological significance of the oxidation of DOPA by peroxidasein vacuoles. (Received March 4, 1991; Accepted May 21, 1991)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号