首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2894篇
  免费   112篇
  国内免费   2篇
  3008篇
  2023年   6篇
  2022年   23篇
  2021年   44篇
  2020年   27篇
  2019年   35篇
  2018年   58篇
  2017年   46篇
  2016年   48篇
  2015年   120篇
  2014年   131篇
  2013年   224篇
  2012年   195篇
  2011年   232篇
  2010年   113篇
  2009年   125篇
  2008年   189篇
  2007年   178篇
  2006年   148篇
  2005年   179篇
  2004年   184篇
  2003年   160篇
  2002年   142篇
  2001年   18篇
  2000年   14篇
  1999年   23篇
  1998年   44篇
  1997年   38篇
  1996年   22篇
  1995年   22篇
  1994年   21篇
  1993年   18篇
  1992年   20篇
  1991年   16篇
  1990年   14篇
  1989年   17篇
  1988年   5篇
  1987年   20篇
  1986年   5篇
  1985年   6篇
  1984年   13篇
  1983年   9篇
  1982年   6篇
  1981年   9篇
  1980年   7篇
  1977年   6篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1973年   5篇
  1970年   3篇
排序方式: 共有3008条查询结果,搜索用时 0 毫秒
71.
The Polo-like kinase, Plk, has multiple roles in regulating mitosis. In particular, Plk1 has been postulated to function as a trigger kinase that phosphorylates and activates Cdc25C prior to the activation of cyclin B-Cdc2 and thereby initiates its activation. However, the upstream regulation of Plk1 activation remains unclear. Here we have studied the interplay between Plk1 and Cdc2 through meiotic and early embryonic cycles in starfish. Distinct kinases, cyclin B-Cdc2, MAPK along with cyclin B- and/or cyclin A-Cdc2 and cyclin A-Cdc2, were unique upstream regulators for Plk1 activation at meiosis I, meiosis II and embryonic M-phase, respectively, indicating that Plk1 is not the trigger kinase at meiotic reinitiation. When Plk1 was required for cyclin B-Cdc2 activation, the action of Plk1 was mediated primarily through suppression of Myt1 rather than through activation of Cdc25. We propose that Plk1 can be activated by either cyclin A- or cyclin B-Cdc2, and its primary target is Myt1.  相似文献   
72.
An aldehyde oxidase, which oxidizes various aliphatic and aromatic aldehydes using O(2) as an electron acceptor, was purified from the cell-free extracts of Pseudomonas sp. KY 4690, a soil isolate, to an electrophoretically homogeneous state. The purified enzyme had a molecular mass of 132 kDa and consisted of three non-identical subunits with molecular masses of 88, 39, and 18 kDa. The absorption spectrum of the purified enzyme showed characteristics of an enzyme belonging to the xanthine oxidase family. The enzyme contained 0.89 mol of flavin adenine dinucleotide, 1.0 mol of molybdenum, 3.6 mol of acid-labile sulfur, and 0.90 mol of 5'-CMP per mol of enzyme protein, on the basis of its molecular mass of 145 kDa. Molecular oxygen served as the sole electron acceptor. These results suggest that aldehyde oxidase from Pseudomonas sp. KY 4690 is a new member of the xanthine oxidase family and might contain 1 mol of molybdenum-molybdpterin-cytosine dinucleotide, 1 mol of flavin adenine dinucleotide, and 2 mol of [2Fe-2S] clusters per mol of enzyme protein. The enzyme showed high reaction rates toward various aliphatic and aromatic aldehydes and high thermostability.  相似文献   
73.
74.
The bioactive lipid sphingosine 1-phosphate (S1P) is known to exert powerful biological effects through the interaction with various members of the endothelial differentiation gene (EDG) receptor family, recently renamed S1P receptors. In the present study, evidence is provided that differentiation of C2C12 myoblasts into myotubes was accompanied by profound changes of EDG/S1P receptor expression. Indeed, in differentiated cells a significant increase of EDG3/S1P3 together with a large decrease of EDG5/S1P2 expression at mRNA as well as protein level was detected. Moreover, S1P was capable to initiate the signalling pathways downstream to cytosolic Ca(2+) increase in myotubes, similarly to that observed in myoblasts, whereas the signalling of the bioactive lipid to phospholipase D (PLD), but not that of bradykinin (BK) or lysophosphatidic acid (LPA), was found impaired in differentiated cells. Intriguingly, overexpression of EDG5/S1P2, but not EDG1/S1P1 or EDG3/S1P3, potentiated the efficacy of S1P to stimulate PLD, strongly suggesting a role for EDG5/S1P2 in the signalling to PLD. This view was also supported by the marked reduction of S1P-induced PLD activity in myoblasts loaded with antisense oligodeoxyribonucleotides (ODN) to EDG5/S1P2. Furthermore, overexpression of EDG5/S1P2 rescued the coupling of S1P signalling to PLD in C2C12 myotubes. Experimental evidence here provided supports the notion that EDG5/S1P2 plays a dominant role in the coupling of S1P to PLD in myoblasts and that the down-regulation of the receptor subtype is responsible for the specific uncoupling of S1P signalling to PLD in myotubes.  相似文献   
75.
76.
Xyloglucan hydrolase (XGH) has recently been purified from the cell wall of azuki bean (Vigna angularis Ohwi et Ohashi) epicotyls as a new type of xyloglucan-degrading enzyme [Tabuchi et al. (2001) Plant Cell Physiol. 42: 154]. In the present study, the effects of XGH on the mechanical properties of the cell wall and on the level and the molecular size of xyloglucans within the native wall architecture were examined in azuki bean epicotyls. When the epidermal tissue strips from the growing regions of azuki bean epicotyls were incubated with XGH, the mechanical extensibility of the cell wall dramatically increased. XGH exogenously applied to cell wall materials (homogenates) or epidermal tissue strips decreased the amount of xyloglucans via the solubilization of the polysaccharides. Also, XGH substantially decreased the molecular mass of xyloglucans in both materials. These results indicate that XGH is capable of hydrolyzing xyloglucans within the native cell wall architecture and thereby increasing the cell wall extensibility in azuki bean epicotyls.  相似文献   
77.
Anoxia tolerance and ethanol sensitivity of rice (Oryza sativa L.) and oat (Avena sativa L.) seedlings were evaluated to clarify their growth habit in anoxia. Anoxic stress inhibited elongation and dry weight gain of coleoptiles of the oat and rice seedlings; however, the inhibition of the oat coleoptiles was much greater than that of the rice coleoptiles. Anoxic stress increased endogenous ethanol concentration and alcohol dehydrogenase activity in oat and rice coleoptiles and their increases in the rice coleoptiles were much greater than those in the oat coleoptiles. At concentrations greater than 30 mM and 300 mM, exogenously applied ethanol inhibited the elongation and weight gain for the oat and the rice coleoptiles, respectively, and the inhibition was increased with increasing ethanol concentrations with marked inhibition being achieved on the oat coleoptiles. These results suggest that anoxia tolerance and induction of ethanolic fermentation in anoxia may be greater in rice than oat, and ethanol sensitivity of rice may be lower than that of oat.  相似文献   
78.
Regulation of angiogenesis by the aging suppressor gene klotho   总被引:5,自引:0,他引:5  
Advanced age is a major risk factor of peripheral artery disease. We examined the effects of the aging-suppressor gene klotho on angiogenesis in response to ischemia by introducing ischemic hindlimb model in mice heterozygously deficient for the klotho gene and in wild type mice. Blood flow recovery as assessed by laser doppler perfusion imaging and angiogenesis as assessed by density of PECAM-1/CD31-positive positive capillaries were markedly impaired in mice heterozygously deficient for the klotho gene (both <0.05). Our findings show that the aging-suppressor gene klotho affects angiogenesis and the possibility that age-related impairment of angiogenesis might be regulated by the klotho gene. Our results present a new possibility of therapeutic angiogenesis for patients of advanced age.  相似文献   
79.
When leaves of Vicia faba were treated with H2O2 or visiblelight in the presence of methyl viologen (MV), the orange-redcompound dopachrome was formed transiently and melanin was accumulated.With the darkening of leaves, the level of 3,4-dihydroxyphenylalanine(DOPA) decreased and then recovered to the original level uponaddition of 1 mM H2O2. However, if leaves were incubated inthe presence of 10 mM H2O2, the level of DOPA decreased againafter the increase. The time course of the changes in levelsof DOPA observed during the accumulation of melanin as a resultof illumination in the presence of MV was very similar to thatobserved after the addition of 10 mM H2O2. Illumination of leavesin the absence of MV did not result in any accumulation of melanin,but the level of DOPA changed slightly. When isolated mesophyllcells were incubated in the dark, the level of DOPA decreased.Illumination of the cells stimulated this decrease. Tropolone,an inhibitor of phenol oxidase, did not inhibit and actuallystimulated the H2O2- and light-induced oxidation of DOPA andaccumulation of melanin in leaves. Tropolone also stimulatedthe decrease in the levels of DOPA both in the dark and in thelight in isolated mesophyll cells. These data suggest that aperoxidase-H2O2 system, and not phenol oxidase, participatesin the oxidation of DOPA. When DOPA was oxidized by a basicperoxidase isolated from V.faba leaves, an intermediate, whichwas perhaps dopaquinone and which was reducible by ascorbate,was formed. Based on the data, a discussion is presented ofthe physiological significance of the oxidation of DOPA by peroxidasein vacuoles. (Received March 4, 1991; Accepted May 21, 1991)  相似文献   
80.
The aim of this study was to examine the hypothesis that delta-opioid receptor activation before ischemia suppresses gap junction (GJ) permeability by PKC-mediated connexin 43 (Cx43) modulation, which contributes to infarct size limitation afforded by the delta-opioid receptor activation. A delta-opioid receptor agonist, [D-Ala(2),D-Leu(5)]-enkephalin acetate (DADLE, 300 nM), was used in place of preconditioning (PC) ischemia to trigger PC mechanisms in rat hearts. GJ permeability during ischemia, which was assessed by Lucifer yellow, was reduced by DADLE to 47% of the control level, and this effect of DADLE was almost abolished by a PKC-epsilon inhibitor [PKC-epsilon translocation inhibitory peptide (PKC-epsilon-TIP)] but was not affected by a PKC-delta inhibitor (rottlerin). After DADLE infusion, PKC-epsilon, but not PKC-delta, was coimmunoprecipitated with Cx43, and the level of phosphorylation of Cx43 at a PKC-dependent site (Ser(368)) was significantly elevated during ischemia. DADLE reduced infarct size after 35 min of ischemia followed by 2 h of reperfusion by 69%, and PKC-epsilon-TIP and rottlerin eliminated 48% and 63%, respectively, of the infarct size-limiting effect of DADLE. Infusion of a GJ blocker, heptanol, before reperfusion reduced infarct size by 36%, and this protection was not enhanced by preischemic infusion of rottlerin + DADLE, which allows PKC-epsilon activation by DADLE. These results suggest that phosphorylation of Cx43 by PKC-epsilon plays a crucial role in delta-opioid-induced suppression of GJ permeability in ischemic myocardium and that this modulation of the GJ is possibly an adjunct mechanism of infarct size limitation afforded by preischemic delta-opioid receptor activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号