首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2901篇
  免费   115篇
  国内免费   2篇
  3018篇
  2023年   7篇
  2022年   23篇
  2021年   45篇
  2020年   27篇
  2019年   35篇
  2018年   58篇
  2017年   46篇
  2016年   49篇
  2015年   121篇
  2014年   132篇
  2013年   225篇
  2012年   199篇
  2011年   232篇
  2010年   114篇
  2009年   126篇
  2008年   189篇
  2007年   179篇
  2006年   149篇
  2005年   179篇
  2004年   186篇
  2003年   162篇
  2002年   142篇
  2001年   18篇
  2000年   16篇
  1999年   24篇
  1998年   44篇
  1997年   38篇
  1996年   22篇
  1995年   22篇
  1994年   21篇
  1993年   17篇
  1992年   19篇
  1991年   16篇
  1990年   14篇
  1989年   17篇
  1988年   5篇
  1987年   19篇
  1986年   5篇
  1985年   6篇
  1984年   13篇
  1983年   8篇
  1982年   6篇
  1981年   9篇
  1980年   7篇
  1979年   3篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
排序方式: 共有3018条查询结果,搜索用时 0 毫秒
91.
Vibrio hollisae strains isolated recently from patients in various locations were examined for the presence of the thermostable direct hemolysin gene (tdh) using nucleic acid hybridization and polymerase chain reaction assays. The results were consistent with the previous finding that all strains of V. hollisae carry the tdh gene. In contrast, the tdh gene has been detected in a minority of strains for other Vibrio species (V. parahaemolyticus, V. cholerae non-O1, and V. mimicus). Detailed phylogenetic analysis showed that the tdh genes of the non-V. hollisae species were very closely related to each other and that the tdh gene of V. hollisae was distantly related to the tdh genes of the non-V. hollisae species. These results and the proposed insertion sequence-mediated tdh transfer mechanism suggest that the tdh gene may have been maintained stably in V. hollisae and that the tdh genes of the non-V. hollisae species may have been involved in recent horizontal transfer.  相似文献   
92.
A phase III observational study evaluating a single-dose of an inactivated, split-virus, unadjuvanted AH1pdm vaccine in HCW was conducted. A safe and effective vaccine was needed after the emergence of AH1pdm in April 2009. We analyzed the immunogenicity and safety of the vaccine. A total of 409 subjects were enrolled and given 15 μg hemagglutinin antigen by s.c. injection. Antibody titers were measured using hemagglutination-inhibition antibody assays before vaccination and 28 days after. The co-primary immunogenicity end-points were the proportion of subjects with antibody titers of 1:40 or more, the proportion of subjects with either seroconversion or a significant increase in antibody titer, and the factor increase in geometric mean titer. We collected 389 pair samples. Antibody titers of 1:40 or more were observed in 148 of 389 subjects (38.0%, 95% CI: 33.2-42.9). The immunogenicity was also confirmed in other end-points, but was not sufficient and was lower than in previous reports. A total of 96 of adverse events was reported: 51 local events and 57 systemic events. There were 12 subjects with both local and systemic events. Nearly all events were mild to moderate except in four subjects. A single 15-μg dose of AH1pdm vaccine did not induce sufficient immunogenicity in HCW, with mild-to-moderate vaccine-associated adverse events. We need to consider further improvement of the AH1pdm vaccine program in HCW for the prevention of nosocomial infection, as well as for the benefit of HCW.  相似文献   
93.
The effect of thalidomide on epidermal growth factor (EGF)-induced cell growth was examined. Thalidomide inhibited EGF-induced cell growth in mouse and human monocytic leukemia cells, RAW 264.7, U937 and THP-1. Thalidomide inhibited EGF-induced phosphorylation of extracellular signal regulated kinase (ERK) 1/2, but not p38 and stress-activated protein kinase (SAPK)/JNK. The phosphorylation of MEK1/2 and Raf at Ser 338 as the upstream molecules of ERK 1/2 was also prevented by thalidomide. Further, it inhibited EGF-induced Ras activation through preventing the transition to GTP-bound active Ras. Thalidomide inhibited the Ras activation induced by lipopolysaccharide (LPS) and vascular endothelial growth factor (VEGF) as well as EGF. There was no significant difference in the expression and function of EGF receptor between thalidomide-treated and non-treated cells. Therefore, thalidomide was suggested to inhibit EGF-induced cell growth via inactivation of Ras.  相似文献   
94.
Adaptation to temperature fluctuation is essential for the survival of all living organisms. Although extensive research has been done on heat and cold shock responses, there have been no reports on global responses to cold shock below 10°C or near-freezing. We examined the genome-wide expression in Saccharomyces cerevisiae, following exposure to 4°C. Hierarchical cluster analysis showed that the gene expression profile following 4°C exposure from 6 to 48 h was different from that at continuous 4°C culture. Under 4°C exposure, the genes involved in trehalose and glycogen synthesis were induced, suggesting that biosynthesis and accumulation of those reserve carbohydrates might be necessary for cold tolerance and energy preservation. The observed increased expression of phospholipids, mannoproteins, and cold shock proteins (e.g., TIP1) is consistent with membrane maintenance and increased permeability of the cell wall at 4°C. The induction of heat shock proteins and glutathione at 4°C may be required for revitalization of enzyme activity, and for detoxification of active oxygen species, respectively. The genes with these functions may provide the ability of cold tolerance and adaptation to yeast cells.  相似文献   
95.
The major aluminum (Al) tolerance gene in wheat ALMT1 confers. An Al-activated efflux of malate from root apices. We determined the genomic structure of the ALMT1 gene and found it consists of 6 exons interrupted by 5 introns. Sequencing a range of wheat genotypes identified 3 alleles for ALMT1, 1 of which was identical to the ALMT1 gene from an Aegilops tauschii accession. The ALMT1 gene was mapped to chromosome 4DL using 'Chinese Spring' deletion lines, and loss of ALMT1 coincided with the loss of both Al tolerance and Al-activated malate efflux. Aluminium tolerance in each of 5 different doubled-haploid populations was found to be conditioned by a single major gene. When ALMT1 was polymorphic between the parental lines, QTL and linkage analyses indicated that ALMT1 mapped to chromosome 4DL and cosegregated with Al tolerance. In 2 populations examined, Al tolerance also segregated with a greater capacity for Al-activated malate efflux. Aluminium tolerance was not associated with a particular coding allele for ALMT1, but was significantly correlated with the relative level of ALMT1 expression. These findings suggest that the Al tolerance in a diverse range of wheat genotypes is primarily conditioned by ALMT1.  相似文献   
96.
Protection against Leishmania major in resistant C57BL/6 mice is mediated by Th1 cells, whereas susceptibility in BALB/c mice is the result of Th2 development. IL-12 release by L. major-infected dendritic cells (DC) is critically involved in differentiation of Th1 cells. Previously, we reported that strain differences in the production of DC-derived factors, e.g., IL-1alphabeta, are in part responsible for disparate disease outcome. In the present study, we analyzed the release of IL-12 from DC in more detail. Stimulated DC from C57BL/6 and BALB/c mice released comparable amounts of IL-12p40 and p70. In the absence of IL-4, BALB/c DC produced significantly more IL-12p40 than C57BL/6 DC. Detailed analyses by Western blot and ELISA revealed that one-tenth of IL-12p40 detected in DC supernatants was released as the IL-12 antagonist IL-12p40 homodimer (IL-12p80). BALB/c DC released approximately 2-fold more IL-12p80 than C57BL/6 DC both in vitro and in vivo. Local injection of IL-12p80 during the first 3 days after infection resulted in increased lesion volumes for several weeks in both L. major-infected BALB/c or C57BL/6 mice, in higher lesional parasite burdens, and decreased Th1-cytokine production. Finally, IL-12p40-transgenic C57BL/6 mice characterized by overexpression of p40 showed increased levels of serum IL-12p80 and enhanced disease susceptibility. Thus, in addition to IL-1alphabeta, strain-dependent differences in the release of other DC-derived factors such as IL-12p80 may influence genetically determined disease outcome.  相似文献   
97.
Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton.  相似文献   
98.
Ferredoxin-NADP+ oxidoreductase (FNR) catalyzing the terminal step of the linear photosynthetic electron transport was purified from the cyanobacterium Spirulina platensis and the red alga Cyanidium caldarium. FNR of Spirulina consisted of three domains (CpcD-like domain, FAD-binding domain, and NADP+-binding domain) with a molecular mass of 46 kDa and was localized in either phycobilisomes or thylakoid membranes. The membrane-bound FNR with 46 kDa was solublized by NaCl and the solublized FNR had an apparent molecular mass of 90 kDa. FNR of Cyanidium consisted of two domains (FAD-binding domain and NADP+-binding domain) with a molecular mass of 33 kDa. In Cyanidium, FNR was found on thylakoid membranes, but there was no FNR on phycobilisomes. The membrane-bound FNR of Cyanidium was not solublized by NaCl, suggesting the enzyme is tightly bound in the membrane. Although both cyanobacteria and red algae are photoautotrophic organisms bearing phycobilisomes as light harvesting complexes, FNR localization and membrane-binding characteristics were different. These results suggest that FNR binding to phycobilisomes is not characteristic for all phycobilisome retaining oxygenic photosynthetic organisms, and that the rhodoplast of red algae had possibly originated from a cyanobacterium ancestor, whose FNR lacked the CpcD-like domain.  相似文献   
99.
Effects of silicon on the mechanical and chemical properties of cell walls in the second leaf of oat (Avena sativa L.) seedlings were investigated. The cell wall extensibility in the basal region of the second leaf was considerably higher than that in the middle and subapical regions. Externally applied silicon increased the cell wall extensibility in the basal region, but it did not affect the extensibility in the middle and subapical regions. The amounts of cell wall polysaccharides and phenolic compounds, such as diferulic acid (DFA) and ferulic acid (FA), per unit length were lower in the basal region than in the middle and subapical regions of the leaf, and silicon altered these amounts in the basal region. In this region, silicon decreased the amounts of matrix polymers and cellulose per unit length and of DFA and FA, both per unit length and unit matrix polymer content. Silicon treatment also lowered the activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) in the basal region. In contrast, the amount of silicon in cell walls increased in response to silicon treatment in three regions. These results suggest that in the basal region, silicon reduces the net wall mass and the formation of phenolic acid-mediated cross-linkages between wall polysaccharides. Such modifications of wall architecture may be responsible for the silicon-induced increase in the cell wall extensibility in oat leaves.  相似文献   
100.
Laboratory populations of cloned Daphnia magna were exposed at different population phases (growing phase, density peak, stable phase) to the insecticide carbaryl at 15 μg 1−1, which was harmful to juveniles but not to adults, and their population dynamics were analyzed. The population declined most at the density peak, when not only juveniles but also many adult individuals died. To analyze the factors affecting population vulnerability to carbaryl, acute toxicity tests were conducted using Daphnia individuals of different body sizes under different food conditions. The test revealed that daphnid sensitivity to carbaryl increased greatly when food density was changed from a high food level to a low level. This food condition, of low availability, might be the condition to which the Daphnia populations were exposed at their density peak. The synergism of the negative impacts of anthropogenic and natural stresses such as insecticides and food shortage may control aquatic populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号