全文获取类型
收费全文 | 2901篇 |
免费 | 115篇 |
国内免费 | 2篇 |
专业分类
3018篇 |
出版年
2023年 | 7篇 |
2022年 | 23篇 |
2021年 | 45篇 |
2020年 | 27篇 |
2019年 | 35篇 |
2018年 | 58篇 |
2017年 | 46篇 |
2016年 | 49篇 |
2015年 | 121篇 |
2014年 | 132篇 |
2013年 | 225篇 |
2012年 | 199篇 |
2011年 | 232篇 |
2010年 | 114篇 |
2009年 | 126篇 |
2008年 | 189篇 |
2007年 | 179篇 |
2006年 | 149篇 |
2005年 | 179篇 |
2004年 | 186篇 |
2003年 | 162篇 |
2002年 | 142篇 |
2001年 | 18篇 |
2000年 | 16篇 |
1999年 | 24篇 |
1998年 | 44篇 |
1997年 | 38篇 |
1996年 | 22篇 |
1995年 | 22篇 |
1994年 | 21篇 |
1993年 | 17篇 |
1992年 | 19篇 |
1991年 | 16篇 |
1990年 | 14篇 |
1989年 | 17篇 |
1988年 | 5篇 |
1987年 | 19篇 |
1986年 | 5篇 |
1985年 | 6篇 |
1984年 | 13篇 |
1983年 | 8篇 |
1982年 | 6篇 |
1981年 | 9篇 |
1980年 | 7篇 |
1979年 | 3篇 |
1977年 | 6篇 |
1976年 | 3篇 |
1975年 | 3篇 |
1974年 | 3篇 |
1973年 | 4篇 |
排序方式: 共有3018条查询结果,搜索用时 0 毫秒
41.
T Koga T Ishida T Takeda Y Ishii H Uchi K Tsukimori M Yamamoto M Himeno M Furue H Yamada 《PloS one》2012,7(7):e40322
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an endocrine disruptor, causes reproductive and developmental toxic effects in pups following maternal exposure in a number of animal models. Our previous studies have demonstrated that TCDD imprints sexual immaturity by suppressing the expression of fetal pituitary gonadotropins, the regulators of gonadal steroidogenesis. In the present study, we discovered that all TCDD-produced damage to fetal production of pituitary gonadotropins as well as testicular steroidogenesis can be repaired by co-treating pregnant rats with α-lipoic acid (LA), an obligate co-factor for intermediary metabolism including energy production. While LA also acts as an anti-oxidant, other anti-oxidants; i.e., ascorbic acid, butylated hydroxyanisole and edaravone, failed to exhibit any beneficial effects. Neither wasting syndrome nor CYP1A1 induction in the fetal brain caused through the activation of aryl hydrocarbon receptor (AhR) could be attenuated by LA. These lines of evidence suggest that oxidative stress makes only a minor contribution to the TCDD-induced disorder of fetal steroidogenesis, and LA has a restorative effect by targeting on mechanism(s) other than AhR activation. Following a metabolomic analysis, it was found that TCDD caused a more marked change in the hypothalamus, a pituitary regulator, than in the pituitary itself. Although the components of the tricarboxylic acid cycle and the ATP content of the fetal hypothalamus were significantly changed by TCDD, all these changes were again rectified by exogenous LA. We also provided evidence that the fetal hypothalamic content of endogenous LA is significantly reduced following maternal exposure to TCDD. Thus, the data obtained strongly suggest that TCDD reduces the expression of fetal pituitary gonadotropins to imprint sexual immaturity or disturb development by suppressing the level of LA, one of the key players serving energy production. 相似文献
42.
Umemoto N Ohnuma T Urpilainen H Yamamoto T Numata T Fukamizo T 《Bioscience, biotechnology, and biochemistry》2012,76(4):778-784
Tryptophan residues located in the substrate-binding cleft of a class V chitinase from Nicotiana tabacum (NtChiV) were mutated to alanine and phenylalanine (W190F, W326F, W190F/W326F, W190A, W326A, and W190A/W326A), and the mutant enzymes were characterized to define the role of the tryptophans. The mutations of Trp326 lowered thermal stability by 5-7 °C, while the mutations of Trp190 lowered stability only by 2-4 °C. The Trp326 mutations strongly impaired enzymatic activity, while the effects of the Trp190 mutations were moderate. The experimental data were rationalized based on the crystal structure of NtChiV in a complex with (GlcNAc)(4), in which Trp190 is exposed to the solvent and involved in face-to-face stacking interaction with the +2 sugar, while Trp326 is buried inside but interacts with the -2 sugar through hydrophobicity. HPLC analysis of anomers of the enzymatic products suggested that Trp190 specifically recognizes the β-anomer of the +2 sugar. The strong effects of the Trp326 mutations on activity and stability suggest multiple roles of the residue in stabilizing the protein structure, in sugar residue binding at subsite -2, and probably in maintaining catalytic efficiency by providing a hydrophobic environment for proton donor Glu115. 相似文献
43.
Li Y Kawamura Y Fujiwara N Naka T Liu H Huang X Kobayashi K Ezaki T 《Systematic and applied microbiology》2003,26(4):523-528
Classification of strain W3-B1, which was isolated from condensation water in the Russian space laboratory Mir, was investigated by a polyphasic taxonomic approach. Cells of strain W3-B1 were nonmotile, asporogenous, gram-negative slender rods with rounded ends. 16S rRNA gene sequence analysis indicated that organism should be placed in the genus Chryseobacterium. This organism contains menaquinone MK-6 as the predominent isoprenoid quinone and 3-OH iso 17:0 (40%), iso 15:0 (33%) as the major fatty acids. Phylogenetically, the nearest relative of strain W3-B1 is Chryseobacterium meningosepticum with sequence similarity of 98.4%, but DNA-DNA hybridization resulted in similarity values of only 52.3%. The G+C mol% is 34.6 mol%. Based upon results obtained by morphological, biochemical, chemotaxonomic, and molecular methods, strain W3-B1 was clearly distinguishable from other Chryseobacterium species. For these reasons, a novel species of family Flavobacteriaceae is proposed; strain W3-B1(T) (= GTC 862(T) = JCM 11413(T) = DSM 14571(T)) is the type strain. 相似文献
44.
Hiroshi Morita Yuichiro Tomizawa Jun Deguchi Tokio Ishikawa Hiroko Arai Kazumasa Zaima Takahiro Hosoya Yusuke Hirasawa Takayuki Matsumoto Katsuo Kamata Wiwied Ekasari Aty Widyawaruyanti Tutik Sri Wahyuni Noor Cholies Zaini Toshio Honda 《Bioorganic & medicinal chemistry》2009,17(24):8234-8240
Cassiarin A 1, a tricyclic alkaloid, isolated from the leaves of Cassia siamea (Leguminosae), shows powerful antimalarial activity against Plasmodium falciparum in vitro as well as P. berghei in vivo, which may be valuable leads for novel antimalarials. Interactions of parasitized red blood cells (pRBCs) with endothelium in aorta are especially important in the processes contribute to the pathogenesis of severe malaria. Nitric oxide (NO) reduces endothelial expression of receptors/adhesion molecules used by pRBC to adhere to vascular endothelium, and reduces cytoadherence of pRBC to vascular endothelium. Cassiarin A 1 showed vasorelaxation activity against rat aortic ring, which may be related with NO production. A series of a hydroxyl and a nitrogen-substituted derivatives and a dehydroxy derivative of 1 have been synthesized as having potent antimalarials against P. falciparum with vasodilator activity, which may reduce cytoadherence of pRBC to vascular endothelium. Cassiarin A 1 exhibited a potent antimalarial activity and a high selectivity index in vitro, suggesting that the presence of a hydroxyl and a nitrogen atom without any substituents may be important to show antimalarial activity. Relative to cassiarin A, a methoxy derivative showed more potent vasorelaxant activity, although it did not show improvement for inhibition of P. falciparum in vitro. These cassiarin derivatives may be promising candidates as antimalarials with different mode of actions. 相似文献
45.
Michael J. Soares Belinda M. Chapman Takayuki Kamei Toshiya Yamamoto 《Development, growth & differentiation》1995,37(4):355-364
Trophoblast cell differentiation is crucial to the morphogenesis of the placenta and thus the establishment of pregnancy and the growth and development of the embryo/fetus. In the present review, we discuss current evidence for the existence of regulatory genes crucial to trophoblast cell differentiation and placental morphogenesis. The elucidation of regulatory pathways controlling normal differentiation of trophoblast cells will facilitate the identification of sensitive junctures in the regulatory pathways leading to various developmental disorders, including those associated with the initiation of pregnancy, fetal growth retardation and gestational trophoblast disease. 相似文献
46.
External ATP causes passive permeability change in several transformed cells, but not in untransformed cells. We studied the effect of external ATP on the passive permeability of CHO-K1 cells, a transformed clone of Chinese hamster ovary cells. Treatment of the cells with external ATP alone did not produce a permeability change, and this was observed only when a mitochondrial inhibitor, such as rotenone or oligomycin, was present together with ATP. These inhibitors reduced the concentration of intracellular ATP and a permeability change by external ATP was observed when intracellular ATP was decreased more than 70%. This requirement for permeability change of CHO-K1 cells was quite unique, since passive permeability change of other transformed cells so far tested was induced by ATP alone. Treatment of CHO-K1 cells with cyclic AMP analogues increased their sensitivity to external ATP about 2-fold. The roles of external and intracellular ATP in controlling passive permeability are discussed. 相似文献
47.
Takayuki Okamoto Nobuyuki Akita Eiji Kawamoto Tatsuya Hayashi Koji Suzuki Motomu Shimaoka 《Experimental cell research》2014
The gap junction proteins connexin32 (Cx32), Cx37, Cx40, and Cx43 are expressed in endothelial cells, and regulate vascular functions involving inflammation, vasculogenesis and vascular remodeling. Aberrant Cxs expression promotes the development of atherosclerosis which is modulated by angiogenesis; however the role played by endothelial Cxs in angiogenesis remains unclear. In this study, we determined the effects of endothelial Cxs, particularly Cx32, on angiogenesis. EA.hy926 cells that had been transfected to overexpress Cx32 significantly increased capillary length and the number on branches compared to Cx-transfectant cells over-expressing Cx37, Cx40, and Cx43 or mock-treated cells. Treatment via intracellular transfer of anti-Cx32 antibody suppressed tube formation of human umbilical vein endothelial cells (HUVECs) compared to controls. In vitro wound healing assays revealed that Cx32-transfectant cells significantly increased the repaired area while anti-Cx32 antibody-treated HUVECs reduced it. Ex vivo aorta ring assays and in vivo matrigel plaque assays showed that Cx32-deficient mice impaired both vascular sprouting from the aorta and cell migration into the implanted matrigel. Therefore endothelial Cx32 facilitates tube formation, wound healing, vascular sprouting, and cell migration. Our results suggest that endothelial Cx32 positively regulates angiogenesis by enhancing endothelial cell tube formation and cell migration. 相似文献
48.
Youichi Suzuki Wei-Xin Chin Qi'En Han Koji Ichiyama Ching Hua Lee Zhi Wen Eyo Hirotaka Ebina Hirotaka Takahashi Chikako Takahashi Beng Hui Tan Takayuki Hishiki Kenji Ohba Toshifumi Matsuyama Yoshio Koyanagi Yee-Joo Tan Tatsuya Sawasaki Justin Jang Hann Chu Subhash G. Vasudevan Kouichi Sano Naoki Yamamoto 《PLoS pathogens》2016,12(1)
Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells. 相似文献
49.
Takahashi N Kawada T Yamamoto T Goto T Taimatsu A Aoki N Kawasaki H Taira K Yokoyama KK Kamei Y Fushiki T 《The Journal of biological chemistry》2002,277(19):16906-16912
50.
Murata Y Homma T Kitagawa E Momose Y Sato MS Odani M Shimizu H Hasegawa-Mizusawa M Matsumoto R Mizukami S Fujita K Parveen M Komatsu Y Iwahashi H 《Extremophiles : life under extreme conditions》2006,10(2):117-128
Adaptation to temperature fluctuation is essential for the survival of all living organisms. Although extensive research has been done on heat and cold shock responses, there have been no reports on global responses to cold shock below 10°C or near-freezing. We examined the genome-wide expression in Saccharomyces cerevisiae, following exposure to 4°C. Hierarchical cluster analysis showed that the gene expression profile following 4°C exposure from 6 to 48 h was different from that at continuous 4°C culture. Under 4°C exposure, the genes involved in trehalose and glycogen synthesis were induced, suggesting that biosynthesis and accumulation of those reserve carbohydrates might be necessary for cold tolerance and energy preservation. The observed increased expression of phospholipids, mannoproteins, and cold shock proteins (e.g., TIP1) is consistent with membrane maintenance and increased permeability of the cell wall at 4°C. The induction of heat shock proteins and glutathione at 4°C may be required for revitalization of enzyme activity, and for detoxification of active oxygen species, respectively. The genes with these functions may provide the ability of cold tolerance and adaptation to yeast cells. 相似文献