首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1678篇
  免费   112篇
  1790篇
  2023年   7篇
  2022年   11篇
  2021年   31篇
  2020年   7篇
  2019年   19篇
  2018年   34篇
  2017年   23篇
  2016年   37篇
  2015年   46篇
  2014年   46篇
  2013年   92篇
  2012年   75篇
  2011年   88篇
  2010年   55篇
  2009年   55篇
  2008年   86篇
  2007年   95篇
  2006年   64篇
  2005年   70篇
  2004年   75篇
  2003年   86篇
  2002年   84篇
  2001年   56篇
  2000年   52篇
  1999年   55篇
  1998年   18篇
  1997年   14篇
  1996年   9篇
  1995年   18篇
  1994年   12篇
  1993年   15篇
  1992年   28篇
  1991年   37篇
  1990年   32篇
  1989年   32篇
  1988年   19篇
  1987年   22篇
  1986年   21篇
  1985年   20篇
  1984年   11篇
  1983年   10篇
  1978年   7篇
  1977年   10篇
  1976年   10篇
  1975年   10篇
  1974年   10篇
  1973年   12篇
  1972年   9篇
  1971年   8篇
  1967年   9篇
排序方式: 共有1790条查询结果,搜索用时 0 毫秒
21.
The chromosomal aberration test using a Chinese hamster lung cell line (CHL) was carried out on ptaquiloside and its related compounds, hypoloside B, hypoloside C, illudin M and illudin S. Ptaquiloside induced chromosomal aberrations at doses as low as 4.5 μg/ml (0.0113 mM). The clastogenic effect was ph-dependent. The same activity was observed at a 90-fold higher dose at pH 5.3 in the culture medium compared with the activity at pH 74. or pH 8.0. Both hypoloside B and hypoloside C were also clastogenic at almost the same dose levels as that of ptaquiloside. Illudin M and illudin S were also potet clastogens and induced aberrations at much lower doses than ptaquiloside. These results suggest that the clastogenic effect is involved in the mechanism of carcinogenic potency of ptaquiloside in animals.  相似文献   
22.
The small GTPase Ha-Ras and Rap1A exhibit high mutual sequence homology and share various target proteins. However, they exert distinct biological functions and exhibit differential subcellular localizations; Rap1A is predominantly localized in the perinuclear region including the Golgi apparatus and endosomes, whereas Ha-Ras is predominantly localized in the plasma membrane. Here, we have identified a small region in Rap1A that is crucial for its perinuclear localization. Analysis of a series of Ha-Ras-Rap1A chimeras shows that Ha-Ras carrying a replacement of amino acids 46-101 with that of Rap1 exhibits the perinuclear localization. Subsequent mutational studies indicate that Rap1A-type substitutions within five amino acids at positions 85-89 of Ha-Ras, such as NNTKS85-89TAQST, NN85-86TA, and TKS87-89QST, are sufficient to induce the perinuclear localization of Ha-Ras. In contrast, substitutions of residues surrounding this region, such as FAI82-84YSI and FEDI90-93FNDL, have no effect on the plasma membrane localization of Ha-Ras. A chimeric construct consisting of amino acids 1-134 of Rap1A and 134-189 of Ha-Ras, which harbors both the palmitoylation and farnesylation sites of Ha-Ras, exhibits the perinuclear localization like Rap1A. Introduction of a Ha-Ras-type substitution into amino acids 85-89 (TAQST85-89NNTKS) of this chimeric construct causes alteration of its predominant subcellular localization site from the perinuclear region to the plasma membrane. These results indicate that a previously uncharacterized domain spanning amino acids 85-89 of Rap1A plays a pivotal role in its perinuclear localization. Moreover, this domain acts dominantly over COOH-terminal lipid modification of Ha-Ras, which has been considered to be essential and sufficient for the plasma membrane localization.  相似文献   
23.
24.
Journal of Plant Research - Cysteine biosynthesis is directed by the successive commitments of serine acetyltransferase, and O-acetylserine (thiol) lyase (OASTL) compounds, which subsequently frame...  相似文献   
25.
Because DNA double-strand breaks (DSBs) are one of the most cytotoxic DNA lesions and often cause genomic instability, precise repair of DSBs is vital for the maintenance of genomic stability. Xrs2/Nbs1 is a multi-functional regulatory subunit of the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex, and its function is critical for the primary step of DSB repair, whether by homologous recombination (HR) or non-homologous end joining. In human NBS1, mutations result truncation of the N-terminus region, which contains a forkhead-associated (FHA) domain, cause Nijmegen breakage syndrome. Here we show that the Xrs2 FHA domain of budding yeast is required both to suppress the imprecise repair of DSBs and to promote the robust activation of Tel1 in the DNA damage response pathway. The role of the Xrs2 FHA domain in Tel1 activation was independent of the Tel1-binding activity of the Xrs2 C terminus, which mediates Tel1 recruitment to DSB ends. Both the Xrs2 FHA domain and Tel1 were required for the timely removal of the Ku complex from DSB ends, which correlates with a reduced frequency of imprecise end-joining. Thus, the Xrs2 FHA domain and Tel1 kinase work in a coordinated manner to maintain DSB repair fidelity.  相似文献   
26.
Tetrahymena thermophila could still swim after incubation of the cell body at 40°C for 30 min, whereas Tetrahymena pyriformis did not show any motility after the treatment. Turbidity measurements revealed that axonemes of T. pyriformis lost ATP-dependent sliding activity by the heat treatment, whereas those of T. thermophilia still had the activity under the same conditions. In connection with this difference in susceptibility to high temperature, the biochemical characteristics of dyneins were compared between the two species of Tetrahymena. Axonemal dyneins from the two species had significant vanadate-sensitive ATPase activity even after the heat treatment. Native gel electrophoresis and the following two-dimensional electrophoresis showed that the outer arm dynein of T. thermophilia is more stable in maintaining native configuration than that of T. pyriformis against the heat treatment, although both treated dyneins keep three (α, β and γ) subunits. Analysis by peptide mapping demonstrated that β- and γ-subunits of the outer arm dynein are considerably different in amino acid sequences between the two species. These results imply that dynein of T. thermophilia changed their amino acid sequences and biochemical characteristics to adapt to high temperature.  相似文献   
27.
Nucleotides (nt) 108 to 742 of an infectious cDNA clone of poliovirus (PV) Mahoney strain, including the corresponding region of the internal ribosome entry site (IRES), was replaced by nt 28 to 710 of hepatitis C virus (HCV) cDNA corresponding to the whole HCV IRES. A chimeric PV (2A-369) was generated by transfecting mammalian cells with an RNA transcribed in vitro from the cDNA. To examine replicating capacity of virus 2A-369 in the brain and liver of a mouse model for poliomyelitis, a new mouse model (MPVRTg25-61) that is transgenic for human PV receptor (hPVR; CD155) was generated in order to obtain a higher expression level of hPVR in the liver than those of hPVRTg mouse lines generated by us so far. The transgene used was constructed by combining a putative regulatory region of the mouse PVR homolog and the whole structural region of the hPVR gene. Virus 2A-369 replicated well in the liver of MPVRTg25-61 but not in the brain, whereas control Mahoney virus replicated well both in the liver and in the brain. The data suggest that the HCV IRES works more efficiently in the liver than in the brain and that PV IRES works well both in the liver and in the brain. The results support the notion that tissue-specific activity of IRES may be reflected in tissue tropism of a virus whose specific translation initiation is driven by IRES, that is, an IRES-dependent virus tropism.  相似文献   
28.
This article reports an investigation on light-addressable potentiometric sensor (LAPS) to be used as a possible biological cell-semiconductor hybrid that will enable us to make an interface between the physical and biological system. To increase the surface potential sensitivity, we used a LAPS structure with single insulator (SiO2) coated with poly-L-ornithine and laminin (PLOL) on Si. Efficient culturing of PC-12 and nerve cells of Lymnaea stagnalis on PLOL-coated Si3N4 and SiO2 was achieved. The thickness of the PLOL layer was found to be about 4 nm by the atomic force microscope (AFM) measurement. Using the advantage of this thin layer of PLOL, we compared the performance of a novel structure to the previously reported "PLOL-coated Si3N4/SiO2/Si" structure. Due to high insulating capacitance, the photocurrent response of the novel LAPS was found to be very steep. As a result, higher sensitivity was achieved. This steepness did not degrade during 10 days when the sensor surface was kept in contact with the cell culture medium and environment. The thickness of PLOL layer, its ability to improve the biological cell adhesion, enhanced sensitivity, and experiment with simulated neural action potential (AP) applied to the novel LAPS show a good promise for LAPS to be a biological cell-semiconductor hybrid.  相似文献   
29.
Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) disease in humans and pose a great public health concern in the regions in which they are endemic. Moreover, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. The limited existing armamentarium to combat human-pathogenic arenaviruses underscores the importance of developing novel antiarenaviral drugs, a task that would be facilitated by the identification and characterization of virus-host cell factor interactions that contribute to the arenavirus life cycle. A genome-wide small interfering RNA (siRNA) screen identified sodium hydrogen exchanger 3 (NHE3) as required for efficient multiplication of LCMV in HeLa cells, but the mechanisms by which NHE activity contributed to the life cycle of LCMV remain unknown. Here we show that treatment with the NHE inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA) resulted in a robust inhibition of LCMV multiplication in both rodent (BHK-21) and human (A549) cells. EIPA-mediated inhibition was due not to interference with virus RNA replication, gene expression, or budding but rather to a blockade of virus cell entry. EIPA also inhibited cell entry mediated by the glycoproteins of the HF arenaviruses LASV and Junin virus (JUNV). Pharmacological and genetic studies revealed that cell entry of LCMV in A549 cells depended on actin remodeling and Pak1, suggesting a macropinocytosis-like cell entry pathway. Finally, zoniporide, an NHE inhibitor being explored as a therapeutic agent to treat myocardial infarction, inhibited LCMV propagation in culture cells. Our findings indicate that targeting NHEs could be a novel strategy to combat human-pathogenic arenaviruses.  相似文献   
30.
Calcium concentrations are strictly regulated in all biological cells, and one of the key molecules responsible for this regulation is the inositol 1,4,5-trisphosphate receptor, which was known to form a homotetrameric Ca(2+) channel in the endoplasmic reticulum. The receptor is involved in neuronal transmission via Ca(2+) signaling and for many other functions that relate to morphological and physiological processes in living organisms. We analysed the three-dimensional structure of the ligand-free form of the receptor based on a single-particle technique using an originally developed electron microscope equipped with a helium-cooled specimen stage and an automatic particle picking system. We propose a model that explains the complex mechanism for the regulation of Ca(2+) release by co-agonists, Ca(2+), inositol 1,4,5-trisphosphate based on the structure of multiple internal cavities and a porous balloon-shaped cytoplasmic domain containing a prominent L-shaped density which was assigned by the X-ray structure of the inositol 1,4,5-trisphosphate binding domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号