首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1947篇
  免费   95篇
  国内免费   2篇
  2023年   3篇
  2022年   9篇
  2021年   10篇
  2020年   9篇
  2019年   22篇
  2018年   23篇
  2017年   20篇
  2016年   56篇
  2015年   48篇
  2014年   88篇
  2013年   150篇
  2012年   119篇
  2011年   150篇
  2010年   83篇
  2009年   65篇
  2008年   97篇
  2007年   96篇
  2006年   125篇
  2005年   129篇
  2004年   124篇
  2003年   124篇
  2002年   122篇
  2001年   20篇
  2000年   21篇
  1999年   17篇
  1998年   37篇
  1997年   28篇
  1996年   19篇
  1995年   21篇
  1994年   25篇
  1993年   6篇
  1992年   19篇
  1991年   13篇
  1990年   12篇
  1989年   17篇
  1988年   15篇
  1987年   14篇
  1986年   17篇
  1985年   7篇
  1984年   7篇
  1983年   11篇
  1982年   14篇
  1981年   7篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1976年   3篇
  1974年   5篇
  1973年   2篇
  1972年   2篇
排序方式: 共有2044条查询结果,搜索用时 187 毫秒
951.
952.
953.
The cell-to-cell junction of endothelial cells (ECs) regulates the fence function of the vascular system. Previously we showed that ECs derived from embryonic stem cells (i.e., EECs) develop to form stable endothelial sheets in monolayer cultures. Immunohistochemical analysis revealed that these EECs formed intercellular junctions with the help of vascular endothelial cadherin (VECD) and claudin-5. In this study, we investigated the response of EC sheets to stimuli that are known to increase vascular permeability. While vascular endothelial growth factor A and histamine disrupted the EC junction by enhancing contraction of EECs, thrombin affected specifically the localization of claudin-5 at this junction. We could not detect any significant effect of thrombin on the localization of VECD. Concerning thrombin receptors, EECs expressed protease-activated receptor 1 (PAR1) but not PAR4. Consistent with this expression pattern, PAR1 agonists eliminated claudin-5 as effectively as thrombin itself. This is the first report to show that claudin-5 can be disassembled from the EC junction in a signal-dependent manner and to suggest that claudin-5 mobilization is a cause of PAR1-induced increase in vascular permeability.  相似文献   
954.
Interaction between adipocytes and macrophages contributes to the development of insulin resistance in obese adipose tissues. In this study, we examined whether luteolin, food-derived flavonoid, could suppress the production of inflammatory mediators of the interaction between adipocytes and macrophages. Experiments using a coculture system of adipocytes and macrophages showed that luteolin suppressed the production of inflammatory mediators. In addition, activated macrophages were targets for the suppressive effect of luteolin. Luteolin inhibited the phosphorylation of JNK and suppressed the production of inflammatory mediators in the activated macrophages. The findings indicate that luteolin can inhibit the interaction between adipocytes and macrophages to suppress the production of inflammatory mediators, suggesting that luteolin is a valuable food-derived compound for the treatment of metabolic syndrome.  相似文献   
955.
Post-translational modifications of tubulin in the nervous system   总被引:1,自引:0,他引:1  
Many studies have shown that microtubules (MTs) interact with MT-associated proteins and motor proteins. These interactions are essential for the formation and maintenance of the polarized morphology of neurons and have been proposed to be regulated in part by highly diverse, unusual post-translational modifications (PTMs) of tubulin, including acetylation, tyrosination, detyrosination, Δ2 modification, polyglutamylation, polyglycylation, palmitoylation, and phosphorylation. However, the precise mechanisms of PTM generation and the properties of modified MTs have been poorly understood until recently. Recent PTM research has uncovered the enzymes mediating tubulin PTMs and provided new insights into the regulation of MT-based functions. The identification of tubulin deacetylase and discovery of its specific inhibitors have paved the way to understand the roles of acetylated MTs in kinesin-mediated axonal transport and neurodegenerative diseases such as Huntington's disease. Studies with tubulin tyrosine ligase (TTL)-null mice have shown that tyrosinated MTs are essential in normal brain development. The discovery of TTL-like genes encoding polyglutamylase has led to the finding that polyglutamylated MTs which accumulate during brain development are involved in synapse vesicle transport or neurite outgrowth through interactions with motor proteins or MT-associated proteins, respectively. Here we review current exciting topics that are expected to advance MT research in the nervous system.  相似文献   
956.
The genus Nocardia includes both pathogens and producers of useful secondary metabolites. Although 16S rRNA analysis is required to accurately discriminate among phylogenetic relationships of the Nocardia species, most branches of 16S rRNA-based phylogenetic trees are not reliable. In this study, we performed in silico analyses of the genome sequences of Nocardia species in order to understand their diversity and classification for their identification and applications. Draft genome sequences of 26 Nocardia strains were determined. Phylogenetic trees were prepared on the basis of multilocus sequence analysis of the concatenated sequences of 12 genes (atpD-dnaJ-groL1-groL2-gyrB-recA-rpoA-secA-secY-sodA-trpB-ychF) and a bidirectional best hit. To elucidate the evolutionary relationships of these genes, the genome-to-genome distance was investigated on the basis of the average nucleotide identity, DNA maximal unique matches index, and genome-to-genome distance calculator. The topologies of all phylogenetic trees were found to be essentially similar to each other. Furthermore, whole genome-derived and multiple gene-derived relationships were found to be suitable for extensive intra-genus assessment of the genus Nocardia.  相似文献   
957.
The moderately halotolerant cyanobacterium Synechocystis sp. strain PCC 6803 contains a plasma membrane aquaporin, AqpZ. We previously reported that AqpZ plays a role in glucose metabolism under photomixotrophic growth conditions, suggesting involvement of AqpZ in cytosolic osmolarity homeostasis. To further elucidate the physiological role of AqpZ, we have studied its gene expression profile and its function in Synechocystis. The expression level of aqpZ was regulated by the circadian clock. AqpZ activity was insensitive to mercury in Xenopus oocytes and in Synechocystis, indicating that the AqpZ can be categorized as a mercury-insensitive aquaporin. Stopped-flow light-scattering spectrophotometry showed that addition of sorbitol and NaCl led to a slower decrease in cell volume of the Synechocystis ΔaqpZ strain than the wild type. The ΔaqpZ cells were more tolerant to hyperosmotic shock by sorbitol than the wild type. Consistent with this, recovery of oxygen evolution after a hyperosmotic shock by sorbitol was faster in the ΔaqpZ strain than in the wild type. In contrast, NaCl stress had only a small effect on oxygen evolution. The amount of AqpZ protein remained unchanged by the addition of sorbitol but decreased after addition of NaCl. This decrease is likely to be a mechanism to alleviate the effects of high salinity on the cells. Our results indicate that Synechocystis AqpZ functions as a water transport system that responds to daily oscillations of intracellular osmolarity.  相似文献   
958.
Since pyrimidine motif triplex DNA is unstable at physiological neutral pH, triplex stabilization at physiological neutral pH is important for improvement of its potential to be applied to various methods in vivo, such as repression of gene expression, mapping of genomic DNA and gene-targeted mutagenesis. For this purpose, we studied the thermodynamic and kinetic effects of a chemical modification, 2'-O,4'-C-ethylene bridged nucleic acid (ENA) modification of triplex-forming oligonucleotide (TFO), on pyrimidine motif triplex formation at physiological neutral pH. Thermodynamic investigations indicated that the modification achieved more than 10-fold increase in the binding constant of the triplex formation. The increased number of the modification in TFO enhanced the increased magnitude of the binding constant. On the basis of the obtained thermodynamic parameters, we suggested that the remarkably increased binding constant by the modification may result from the increased stiffness of TFO in the unbound state. Kinetic studies showed that the considerably decreased dissociation rate constant resulted in the observed increased binding constant by the modification. We conclude that ENA modification of TFO could be a useful chemical modification to promote the triplex formation under physiological neutral condition, and may advance various triplex formation-based methods in vivo.  相似文献   
959.
Neprilysin is one of the major amyloid-β peptide (Aβ)-degrading enzymes, the expression of which declines in the brain during aging. The decrease in neprilysin leads to a metabolic Aβ imbalance, which can induce the amyloidosis underlying Alzheimer disease. Pharmacological activation of neprilysin during aging therefore represents a potential strategy to prevent the development of Alzheimer disease. However, the regulatory mechanisms mediating neprilysin activity in the brain remain unclear. To address this issue, we screened for pharmacological regulators of neprilysin activity and found that the neurotrophic factors brain-derived neurotrophic factor, nerve growth factor, and neurotrophins 3 and 4 reduce cell surface neprilysin activity. This decrease was mediated by MEK/ERK signaling, which enhanced phosphorylation at serine 6 in the neprilysin intracellular domain (S6-NEP-ICD). Increased phosphorylation of S6-NEP-ICD in primary neurons reduced the levels of cell surface neprilysin and led to a subsequent increase in extracellular Aβ levels. Furthermore, a specific inhibitor of protein phosphatase-1a, tautomycetin, induced extensive phosphorylation of the S6-NEP-ICD, resulting in reduced cell surface neprilysin activity. In contrast, activation of protein phosphatase-1a increased cell surface neprilysin activity and lowered Aβ levels. Taken together, these results indicate that the phosphorylation status of S6-NEP-ICD influences the localization of neprilysin and affects extracellular Aβ levels. Therefore, maintaining S6-NEP-ICD in a dephosphorylated state, either by inhibition of protein kinases involved in its phosphorylation or by activation of phosphatases catalyzing its dephosphorylation, may represent a new approach to prevent reduction of cell surface neprilysin activity during aging and to maintain physiological levels of Aβ in the brain.  相似文献   
960.
Objectives: It is well-known that smoking causes many diseases including cancers. Informing smokers of their genotypes associated with the vulnerability to the harms of smoking may be effective measures for smoking cessation. The present study examined the effects of genotype notification of an oncogene (L-myc) genotype to smokers on their behavior to quit smoking. Methods: Subjects were 562 employees of a bank who answered to be a smoker for a questionnaire used at annual health checkup at workplace from July to December 2002. Those enrolled on August, October, and December were allocated into the genotype notification group (intervention group), and the rest into the controls. Among 286 smokers allocated into the intervention group, 257 participants (89.9%) agreed to genotype testing. One year after the enrollment, a follow-up questionnaire survey was conducted for all smokers including controls. Results: Those who stated to have quitted smoking were 22 (8.0%) among the 276 controls and 15 (5.8%) among the 257 genotype notified participants, providing that the odds ratio (OR) of cessation for the intervention was 0.64 (95% confidence interval, 0.32–1.28). No psychological problems associated with genotype notification were observed. Conclusion: The present study did not show positive effects of genotype notification on smoking cessation rate. To elevate the cessation rate, methods to explain and notify genotypes should be improved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号