首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12836篇
  免费   695篇
  国内免费   3篇
  2022年   41篇
  2021年   135篇
  2020年   83篇
  2019年   120篇
  2018年   164篇
  2017年   154篇
  2016年   244篇
  2015年   393篇
  2014年   466篇
  2013年   937篇
  2012年   832篇
  2011年   843篇
  2010年   547篇
  2009年   515篇
  2008年   838篇
  2007年   889篇
  2006年   791篇
  2005年   832篇
  2004年   823篇
  2003年   756篇
  2002年   731篇
  2001年   121篇
  2000年   123篇
  1999年   186篇
  1998年   195篇
  1997年   128篇
  1996年   131篇
  1995年   107篇
  1994年   96篇
  1993年   103篇
  1992年   115篇
  1991年   77篇
  1990年   77篇
  1989年   84篇
  1988年   62篇
  1987年   74篇
  1986年   66篇
  1985年   56篇
  1984年   61篇
  1983年   55篇
  1982年   69篇
  1981年   52篇
  1980年   60篇
  1979年   24篇
  1978年   26篇
  1977年   35篇
  1976年   35篇
  1975年   35篇
  1974年   20篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Differential posttranslational modification of proliferating cell nuclear antigen (PCNA) by ubiquitin or SUMO plays an important role in coordinating the processes of DNA replication and DNA damage tolerance. Previously it was shown that the loss of RAD6-dependent error-free postreplication repair (PRR) results in DNA damage checkpoint-mediated G2 arrest in cells exposed to chronic low-dose UV radiation (CLUV), whereas wild-type and nucleotide excision repair-deficient cells are largely unaffected. In this study, we report that suppression of homologous recombination (HR) in PRR-deficient cells by Srs2 and PCNA sumoylation is required for checkpoint activation and checkpoint maintenance during CLUV irradiation. Cyclin-dependent kinase (CDK1)-dependent phosphorylation of Srs2 did not influence checkpoint-mediated G2 arrest or maintenance in PRR-deficient cells but was critical for HR-dependent checkpoint recovery following release from CLUV exposure. These results indicate that Srs2 plays an important role in checkpoint-mediated reversible G2 arrest in PRR-deficient cells via two separate HR-dependent mechanisms. The first (required to suppress HR during PRR) is regulated by PCNA sumoylation, whereas the second (required for HR-dependent recovery following CLUV exposure) is regulated by CDK1-dependent phosphorylation.DNA damage occurs frequently in all organisms as a consequence of both endogenous metabolic processes and exogenous DNA-damaging agents. In nature, the steady-state level of DNA damage is usually very low. However, chronic low-level DNA damage can lead to age-related genome instability as a consequence of the accumulation of DNA damage (12, 27). Increasing evidence implicates DNA damage-related replication stress in genome instability (7, 21). Replication stress occurs when an active fork encounters DNA lesions or proteins tightly bound to DNA. These obstacles pose a threat to the integrity of the replication fork and are thus a potential source of genome instability, which can contribute to tumorigenesis and aging in humans (4, 11). Confronted with this risk, cells have developed fundamental DNA damage response mechanisms in order to faithfully complete DNA replication (8).In budding yeast Saccharomyces cerevisiae, the Rad6-dependent postreplication repair (PRR) pathway is subdivided into three subpathways, which allow replication to resume by bypassing the lesion without repairing the damage (3, 22, 33). Translesion synthesis (TLS) pathways dependent on the DNA polymerases eta and zeta promote error-free or mutagenic bypass depending on the DNA lesion and are activated upon monoubiquitination of proliferating cell nuclear antigen (PCNA) at Lys164 (K164) (5, 16, 37). The Rad5 (E3) and Ubc13 (E2)/Mms2 (E2 variant)-dependent pathway promotes error-free bypass by template switching and is activated by polyubiquitination of PCNA via a Lys63-linked ubiquitin chain (16, 38, 41). It remains mechanistically unclear how polyubiquitinated PCNA promotes template switching at the molecular level. In addition to its ubiquitin E3 activity, Rad5 also has a helicase domain and was recently shown to unwind and reanneal fork structures in vitro (6). This led to the proposal that Rad5 helicase activity is required at replication forks to promote fork regression and subsequent template switching. It is possible that PCNA polyubiquitination acts to facilitate Rad5-dependent template switching by inhibiting monoubiquitination-dependent TLS activity and/or by recruiting alternative proteins to the fork.In addition to modification by ubiquitin, PCNA can also be sumoylated on Lys164 by the SUMO E3 ligase Siz1 (16). A second sumoylation site, Lys127, is also targeted by an alternative SUMO E3 ligase, Siz2, albeit with lower efficiency (16, 30). PCNA SUMO modification results in recruitment of the Srs2 helicase and subsequent inhibition of Rad51-dependent recombination events (29, 32). The modification can therefore allow the replicative bypass of lesions by promoting the RAD6 pathway. Srs2 is known to act as an antirecombinase by eliminating recombination intermediates. This can occur independently of PCNA sumoylation, and when srs2Δ cells are UV irradiated or other antirecombinases, such as Sgs1, are concomitantly deleted, toxic recombination structures accumulate (1, 10). Such genetic data are consistent with the ability of Srs2 to disassemble the Rad51 nucleoprotein filaments formed on single-stranded DNA (ssDNA) in vitro (20, 40). In addition to directly inhibiting homologous recombination (HR), Srs2 is also involved in regulating HR outcomes to not produce crossover recombinants in the mitotic cell cycle (18, 34, 35).The UV spectrum present in sunlight is a primary environmental cause of exogenous DNA damage. Sunlight is a potent and ubiquitous carcinogen responsible for much of the skin cancer in humans (17). In the natural environment, organisms are exposed to chronic low-dose UV light (CLUV), as opposed to the acute high doses commonly used in laboratory experiments. Hence, understanding the cellular response to CLUV exposure is an important approach complementary to the more traditional laboratory approaches for clarifying the biological significance of specific DNA damage response pathways. A recently developed experimental assay for the analysis of CLUV-induced DNA damage responses was used to show that the PCNA polyubiquitination-dependent error-free PRR pathway plays a critical role in tolerance of CLUV exposure by preventing the generation of excessive ssDNA when replication forks arrest, thus suppressing counterproductive checkpoint activation (13).Mutants of SRS2 were first isolated by their ability to suppress the radiation sensitivity of rad6 and rad18 mutants (defective in PRR) by a mechanism that requires a functional HR pathway (23, 36). In this study, we analyzed the function of Srs2 in CLUV-exposed PRR-deficient cells. We established that Srs2 acts in conjunction with SUMO-modified PCNA to lower the threshold for checkpoint activation and maintenance by suppressing the function of HR in rad18Δ cells exposed to CLUV. We also showed that Srs2 is separately involved in an HR-dependent recovery process following cessation of CLUV exposure and that this second role for Srs2, unlike its primary role in checkpoint activation and maintenance, is regulated by CDK1-dependent phosphorylation. Thus, Srs2 is involved in both CLUV-induced checkpoint-mediated arrest and recovery from CLUV exposure in PRR-deficient cells, and these two functions, while both involving HR, are separable and thus independent.  相似文献   
992.
Trans-2-Pentenal (pentenal), an α,β-unsaturated aldehyde, induces increases in [Ca2+]i in cultured neonatal rat trigeminal ganglion (TG) neurons. Since all pentenal-sensitive neurons responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC) and neurons from TRPA1 knockouts failed to respond to pentenal, TRPA1 appears to be sole initial transduction site for pentenal-evoked trigeminal response, as reported for the structurally related irritant, acrolein. Furthermore, because the neuronal sensitivity to pentenal is strictly dependent upon the presence of extracellular Na+/Ca2+, as we showed previously, we investigated which types of voltage-gated sodium/calcium channels (VGSCs/VGCCs) are involved in pentenal-induced [Ca2+]i increases as a downstream mechanisms. The application of tetrodotoxin (TTX) significantly suppressed the pentenal-induced increase in [Ca2+]i in a portion of TG neurons, suggesting that TTX-sensitive (TTXs) VGSCs contribute to the pentenal response in those neurons. Diltiazem and ω-agatoxin IVA, antagonists of L- and P/Q-type VGCCs, respectively, both caused significant reductions of the pentenal-induced responses. ω-Conotoxin GVIA, on the other hand, caused only a small decrease in the size of pentenal-induced [Ca2+]i rise. These indicate that both L- and P/Q-type VGCCs are involved in the increase in [Ca2+]i produced by pentenal, while N-type calcium channels play only a minor role. This study demonstrates that TTXs VGSCs, L- and P/Q-type VGCCs play a significant role in the pentenal-induced trigeminal neuronal responses as downstream mechanisms following TRPA1 activation.  相似文献   
993.
The physical habitat characteristics associated with spatial distribution patterns of the freshwater mussel Pronodularia japanensis, which is used for oviposition by the Tokyo bitterling Tanakia tanago, were investigated in a small stream within a Tokyo bitterling protected area. The distribution of the mussels was found to be in an under-dispersed, non-random spatial pattern. Mussel occurrence correlated negatively with sediment softness, and positively with flow velocity, while mussel abundance was associated negatively with sediment softness and positively with sediment type (particle size). Furthermore, mussels were scarce in riverbed areas with a lack of sediment. These correlations suggest that the population dynamics of mussels and Tokyo bitterling may be influenced by changes in stream sediment conditions. To conserve the symbiosis between Tokyo bitterlings and mussels, a suitable benthic environment is required.  相似文献   
994.
Tobacco smoking is the main risk factor associated with chronic periodontitis, but the mechanisms that underlie this relationship are largely unknown. Recent reports proposed that nicotine plays an important role in tobacco-related morbidity by acting through the nicotinic acetylcholine receptors (nAChRs) expressed by non-neuronal cells. The aim of this study was to investigate whether α7 nAChR was expressed in periodontal tissues and whether it functions by regulating IL-1β in the process of periodontitis. In vitro, human periodontal ligament (PDL) cells were cultured with 10−12 M of nicotine and/or 10−9 M of alpha-bungarotoxin (α-Btx), a α7 nAChR antagonist. The expression of α7 nAChR and IL-1β in PDL cells and the effects of nicotine/α-Btx administration on their expression were explored. In vivo, an experimental periodontitis rat model was established, and the effects of nicotine/α-Btx administration on expression of α7 nAChR and development of periodontitis were evaluated. We found that α7 nAChR was present in human PDL cells and rat periodontal tissues. The expressions of α7 nAChR and IL-1β were significantly increased by nicotine administration, whereas α-Btx treatment partially suppressed these effects. This study was the first to demonstrate the functional expression of α7 nAChR in human PDL cells and rat periodontal tissues. Our results may be pertinent to a better understanding of the relationships among smoking, nicotine, and periodontitis.  相似文献   
995.
RAD51 is a key factor in homologous recombination (HR) and plays an essential role in cellular proliferation by repairing DNA damage during replication. The assembly of RAD51 at DNA damage is strictly controlled by RAD51 mediators, including BRCA1 and BRCA2. We found that human RAD51 directly binds GEMIN2/SIP1, a protein involved in spliceosome biogenesis. Biochemical analyses indicated that GEMIN2 enhances the RAD51–DNA complex formation by inhibiting RAD51 dissociation from DNA, and thereby stimulates RAD51-mediated homologous pairing. GEMIN2 also enhanced the RAD51-mediated strand exchange, when RPA was pre-bound to ssDNA before the addition of RAD51. To analyze the function of GEMIN2, we depleted GEMIN2 in the chicken DT40 line and in human cells. The loss of GEMIN2 reduced HR efficiency and resulted in a significant decrease in the number of RAD51 subnuclear foci, as observed in cells deficient in BRCA1 and BRCA2. These observations and our biochemical analyses reveal that GEMIN2 regulates HR as a novel RAD51 mediator.  相似文献   
996.
We had previously exploited a method for targeted DNA methylation in budding yeast to succeed in one-hybrid detection of methylation-dependent DNA–protein interactions. Based on this finding, we developed a yeast one-hybrid system to screen cDNA libraries for clones encoding methylated DNA-binding proteins. Concurrent use of two independent bait sequences in the same cell, or dual-bait system, effectively reduced false positive clones, which were derived from methylation-insensitive sequence-specific DNA-binding proteins. We applied the dual-bait system to screen cDNA libraries and demonstrated efficient isolation of clones for methylated DNA-binding proteins. This system would serve as a unique research tool for epigenetics.  相似文献   
997.
Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase (RTK). We recently identified homozygous smallie mutant mice (BKS.HRS. Ddr2slie/slie/J, Ddr2slie/slie mutants), which lack a functional DDR2. Ddr2slie/slie mutant mice are dwarfed and infertile due to peripheral dysregulation of the endocrine system. To understand the role of DDR2 signaling in spermatogenesis, we studied the expression of several receptors, enzymes, and proteins related to spermatogenesis in wild‐type and Ddr2slie/slie mutant mice at 10 weeks and 5 months of age. DDR2 were expressed in adult wild‐type male mice in Leydig cells. The number of differentiated spermatozoa in the seminal fluid was significantly lower in the Ddr2slie/slie mutant mice than in the wild‐type mice. The number of TUNEL‐positive cells was significantly greater in 5‐month‐old Ddr2slie/slie mutants. Testosterone was significantly reduced at 5 months of age, but LH was similar in both types of mice at both 10 weeks and 5 months of age. The expression levels of LH receptors (Lhcgr), StAR, P450scc, and Hsd3β6 were not significantly different between the two types of mice at 10 weeks of age, but they were significantly reduced in 5‐month‐old Ddr2slie/slie mutants compared to wild‐type mice of the same age. DDR2 was expressed in the Leydig cells of adult wild‐type male mice. In conclusion, our results indicated that DDR2 signaling plays a critical role in the maintenance of male spermatogenesis. Mol. Reprod. Dev. 77: 29–37, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
998.
Microtubule (MT) nucleation and organization depend on the evolutionarily conserved protein γ -tubulin, which forms a complex with GCP2-GCP6 (GCP for γ -Tubulin Complex Protein). To date, it is still unclear how GCP4-GCP6 (the non-core GCPs) may be involved in acentrosomal MT nucleation in plant cells. We found that GCP4 was associated with γ -tubulin in vivo in Arabidopsis thaliana. When GCP4 expression was repressed by an artificial microRNA, transgenic plants exhibited phenotypes of dwarfism and reduced organ size. In mitotic cells, it was observed that the γ -tubulin signal associated with the mitotic spindle, and the phragmoplast was depleted when GCP4 was downregulated. Consequently, MTs failed to converge at unified spindle poles, and the bipolar phragmoplast MT array frequently had discrete bundles with extended minus ends, resulting in failed cytokinesis as reflected by cell wall stubs in leaf epidermal cells. In addition, cortical MTs in swollen guard cells and pavement cells of the leaf epidermis became hyperparallel and bundled, which was likely caused by frequent MT nucleation with shallow angles on the wall of extant MTs. Therefore, our results support the notion that GCP4 is an indispensable component for the function of γ -tubulin in MT nucleation and organization in plant cells.  相似文献   
999.
Rice (Oryza sativa) endosperm accumulates a massive amount of storage starch and storage proteins during seed development. However, little is known about the regulatory system involved in the production of storage substances. The rice flo2 mutation resulted in reduced grain size and starch quality. Map-based cloning identified FLOURY ENDOSPERM2 (FLO2), a member of a novel gene family conserved in plants, as the gene responsible for the rice flo2 mutation. FLO2 harbors a tetratricopeptide repeat motif, considered to mediate a protein-protein interactions. FLO2 was abundantly expressed in developing seeds coincident with production of storage starch and protein, as well as in leaves, while abundant expression of its homologs was observed only in leaves. The flo2 mutation decreased expression of genes involved in production of storage starch and storage proteins in the endosperm. Differences between cultivars in their responsiveness of FLO2 expression during high-temperature stress indicated that FLO2 may be involved in heat tolerance during seed development. Overexpression of FLO2 enlarged the size of grains significantly. These results suggest that FLO2 plays a pivotal regulatory role in rice grain size and starch quality by affecting storage substance accumulation in the endosperm.  相似文献   
1000.
The C-terminal membrane domain of erythrocyte band 3 functions as an anion exchanger. Here, we report the three-dimensional (3D) structure of the membrane domain in an inhibitor-stabilized, outward-open conformation at 18 Å resolution. Unstained, frozen-hydrated tubular crystals containing the membrane domain of band 3 purified from human red blood cells (hB3MD) were examined using cryo-electron microscopy and iterative helical real-space reconstruction (IHRSR). The 3D image reconstruction of the tubular crystals showed the molecular packing of hB3MD dimers with dimensions of 60 × 110 Å in the membrane plane and a thickness of 70 Å across the membrane. Immunoelectron microscopy and carboxyl-terminal digestion demonstrated that the intracellular surface of hB3MD was exposed on the outer surface of the tubular crystal. A 3D density map revealed that hB3MD consists of at least two subdomains and that the outward-open form is characterized by a large hollow area on the extracellular surface and continuous density on the intracellular surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号