首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12156篇
  免费   652篇
  国内免费   3篇
  12811篇
  2023年   18篇
  2022年   46篇
  2021年   129篇
  2020年   81篇
  2019年   110篇
  2018年   154篇
  2017年   145篇
  2016年   234篇
  2015年   376篇
  2014年   443篇
  2013年   877篇
  2012年   800篇
  2011年   811篇
  2010年   531篇
  2009年   495篇
  2008年   814篇
  2007年   864篇
  2006年   773篇
  2005年   806篇
  2004年   794篇
  2003年   732篇
  2002年   688篇
  2001年   107篇
  2000年   103篇
  1999年   164篇
  1998年   182篇
  1997年   120篇
  1996年   121篇
  1995年   95篇
  1994年   94篇
  1993年   97篇
  1992年   95篇
  1991年   70篇
  1990年   64篇
  1989年   69篇
  1988年   40篇
  1987年   53篇
  1986年   52篇
  1985年   46篇
  1984年   55篇
  1983年   43篇
  1982年   62篇
  1981年   51篇
  1980年   56篇
  1979年   20篇
  1978年   24篇
  1977年   29篇
  1976年   34篇
  1975年   33篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Glucose-6-phosphate dehydrogenase in a yeast, Hansenula mrakii IFO 0895 is induced when the cells are cultured in a medium containing lipid hydroperoxide. The enzyme was purified from H. mrakii to the homogeneous state on polyacrylamide gel electrophoresis. The molecular weight of the purified enzyme was estimated to be approximately 52kDa by SDS-PAGE and 130 kDa by Sephadex G-150column chromatography, respectively. The enzyme was specific to glucose-6-phosphate and NADP+, and Kmvalues for glucose-6-phosphate and NADP+ were 293µM and 24.1 µM, respectively. The enzyme activity was inhibited by diethylpyrocarbonate and 2, 4, 6-trinitrobenzene sulfonate, and by metal ions such as Zn2 +, Cd2 +, Cu2 +, and Al3 + . tert-Butyl hydroperoxide, a kind of lipid hydroperoxide, slightly(approximately 20%) increased the enzyme activity.  相似文献   
992.
Brain capillary endothelial cells (BCECs) play an important role in blood-brain barrier (BBB) functions and pathophysiologic mechanisms in brain ischemia and inflammation. We try to suppress gene expression in BCECs by intravenous application of small interfering RNA (siRNA). After injection of large dose siRNA with hydrodynamic technique to mouse, suppression of endogenous protein and the BBB function of BCECs was investigated. The brain-to-blood transport function of organic anion transporter 3 (OAT3) that expressed in BCECs was evaluated by Brain Efflux Index method in mouse. The siRNA could be delivered to BCECs and efficiently inhibited endogenously expressed protein of BCECs. The suppression effect of siRNA to OAT3 is enough to reduce the brain-to-blood transport of OAT3 substrate, benzylpenicillin at BBB. The in vivo siRNA-silencing method with hydrodynamic technique may be useful for the study of BBB function and gene therapy targeting BCECs.  相似文献   
993.
Salmonid fishes are among the few animal taxa with a probable recent tetraploid ancestor. The present study is the first to compare large (>100 kb) duplicated genomic sequence fragments in such species. Two contiguous stretches with major histocompatibility complex (MHC) class I genes were detected in a rainbow trout BAC library, mapped and sequenced. The MHC class I duplicated regions, mapped by fluorescence in situ hybridization (FISH), were shown to be located on different metaphase chromosomes, Chr 14 and 18. Gene organization in both duplications is similar to that in other fishes, in that the class I loci are tightly linked with the PSMB8, PSMB9, PSMB10 and ABCB3 genes. Whereas one region, Onmy-IA, has a classical MHC class I locus (UBA), Onmy-IB encodes only non-classical class Ib proteins. The nucleotide diversity between the Onmy-IA and Onmy-IB noncoding regions is about 14%. This suggests that the MHC class I duplication event has occurred about 60 mya close to the time of an hypothesized ancestral tetraploid event. The present article is the first convincing report on the co-existence of two closely related MHC class I core regions on two different chromosomes. The interchromosomal duplication and the homology levels are supportive of the tetraploid model.Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank database under the accession numbers AB162342, AB162343 and from AY525774 to AY525776.  相似文献   
994.
In mammals, the nucleolus of full‐grown oocyte is essential for embryonic development but not for oocyte maturation. In our study, the role of the growing oocyte nucleolus in oocyte maturation was examined by nucleolus removal and/or transfer into previously enucleolated, growing (around 100 µm in diameter) or full‐grown (120 µm) pig oocytes. In the first experiment, the nucleoli were aspirated from growing oocytes whose nucleoli had been compacted by actinomycin D treatment, and the enucleolated oocytes were matured in vitro. Most of non‐treated or actinomycin D‐treated oocytes did not undergo germinal vesicle breakdown (GVBD; 13% and 12%, respectively). However, the GVBD rate of enucleolated, growing oocytes significantly increased to 46%. The low GVBD rate of enucleolated, growing oocytes was restored again by the re‐injection of nucleoli from growing oocytes (23%), but not when nucleoli from full‐grown oocytes were re‐injected into enucleolated, growing oocytes (49%). When enucleolated, full‐grown oocytes were injected with nucleoli from growing or full‐grown oocytes, the nucleolus in the germinal vesicle was reassembled (73% and 60%, respectively). After maturation, the enucleolated, full‐grown oocytes injected with nucleoli from full‐grown oocytes matured to metaphase II (56%), whereas injection with growing‐oocyte nucleoli reduced this maturation to 21%. These results suggest that the growing‐oocyte nucleolus is involved in the oocyte's meiotic arrest, and that the full‐grown oocyte nucleolus has lost the ability. Mol. Reprod. Dev. 78:426–435, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   
995.
996.
How aromatic compounds are degraded in various anaerobic ecosystems (e.g. groundwater, sediments, soils and wastewater) is currently poorly understood. Under methanogenic conditions (i.e. groundwater and wastewater treatment), syntrophic metabolizers are known to play an important role. This study explored the draft genome of Syntrophorhabdus aromaticivorans strain UI and identified the first syntrophic phenol‐degrading phenylphosphate synthase (PpsAB) and phenylphosphate carboxylase (PpcABCD) and syntrophic terephthalate‐degrading decarboxylase complexes. The strain UI genome also encodes benzoate degradation through hydration of the dienoyl‐coenzyme A intermediate as observed in Geobacter metallireducens and Syntrophus aciditrophicus. Strain UI possesses electron transfer flavoproteins, hydrogenases and formate dehydrogenases essential for syntrophic metabolism. However, the biochemical mechanisms for electron transport between these H2/formate‐generating proteins and syntrophic substrate degradation remain unknown for many syntrophic metabolizers, including strain UI. Analysis of the strain UI genome revealed that heterodisulfide reductases (HdrABC), which are poorly understood electron transfer genes, may contribute to syntrophic H2 and formate generation. The genome analysis further identified a putative ion‐translocating ferredoxin : NADH oxidoreductase (IfoAB) that may interact with HdrABC and dissimilatory sulfite reductase gamma subunit (DsrC) to perform novel electron transfer mechanisms associated with syntrophic metabolism.  相似文献   
997.
Acute and chronic effects of γ-butyrolactone-γ-carbonyl-histidyl-prolinamide (DN-1417) were investigated on motor activity, dopamine (DA) metabolites and DA receptors in various brain regions of rats. The motor activity, as measured with Automex recorder, was enhanced after a single injection with DN-1417 (20 mg/kg, IP), and the motor stimulating action persisted during 21 daily injections. Acute DN-1417 elevated both homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in 7 brain regions, prefrontal cortex polar, medial and lateral fields, nucleus accumbens, olfactory tubercles, amygdala and striatum. After chronic treatment for 7 days, the acute effect of DN-1417 on DA metabolites disappeared in all regions except for the striatum in which DN-1417 still increased HVA and DOPAC. The response of striatal DA metabolites was also observed after chronic treatment for 21 days. Chronic DN-1417 produced no significant change in 3H-spiperone binding in the prefrontal cortex, nucleus accumbens, olfactory tubercles and striatum, while striatal 3H-DA binding displaced by 30 nM spiperone was enhanced after chronic treatment. These results indicate that DN-1417 interacts with mesocortical, mesolimbic and nigrostriatal DA systems in the different modes of action. The lack of tolerance to motor hyperactivity, however, raises the question as to whether DN-1417-induced hyperactivity may be mediated by the activation of mesolimbic DA neurons. The involvement of nigrostriatal neurons in DN-1417-induced motor hyperactivity is suggested.  相似文献   
998.
999.
SR-PSOX and CXC chemokine ligand (CXCL)16, which were originally identified as a scavenger receptor and a transmembrane-type chemokine, respectively, are indicated to be identical. In this study, we demonstrate that membrane-bound SR-PSOX/CXCL16 mediates adhesion and phagocytosis of both Gram-negative and Gram-positive bacteria. Importantly, our prepared anti-SR-PSOX mAb, which suppressed chemotactic activity of SR-PSOX, significantly inhibited bacterial phagocytosis by human APCs including dendritic cells. Various scavenger receptor ligands inhibited the bacterial phagocytosis of SR-PSOX. In addition, the recognition specificity for bacteria was determined by only the chemokine domain of SR-PSOX/CXCL16. Thus, SR-PSOX/CXCL16 may play an important role in facilitating uptake of various pathogens and chemotaxis of T and NKT cells by APCs through its chemokine domain.  相似文献   
1000.
A wasp venom, mastoparan, rapidly increased the cytosolic free Ca2+ concentration ([Ca2+]i) and activated phosphorylase in rat hepatocytes in a concentration-dependent manner. Mastoparan could increase [Ca2+]i even in the absence of extracellular Ca2+, but a larger increase was observed in the presence of extracellular Ca2+. Thus, mastoparan mobilized Ca2+ from intracellular and extracellular Ca2+ stores. It also activated inositol triphosphate (IP3) accumulation, but did not stimulate cAMP production. From these results, we conclude that mastoparan activates rat hepatic glycogenolysis mediated by the accumulation of IP3, which causes an increase of [Ca2+]i but not that mediated by cAMP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号