首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12322篇
  免费   649篇
  国内免费   3篇
  2023年   16篇
  2022年   34篇
  2021年   129篇
  2020年   81篇
  2019年   111篇
  2018年   154篇
  2017年   145篇
  2016年   236篇
  2015年   380篇
  2014年   448篇
  2013年   889篇
  2012年   811篇
  2011年   820篇
  2010年   534篇
  2009年   496篇
  2008年   833篇
  2007年   872篇
  2006年   785篇
  2005年   820篇
  2004年   802篇
  2003年   743篇
  2002年   705篇
  2001年   107篇
  2000年   100篇
  1999年   167篇
  1998年   187篇
  1997年   121篇
  1996年   123篇
  1995年   101篇
  1994年   92篇
  1993年   97篇
  1992年   97篇
  1991年   67篇
  1990年   69篇
  1989年   75篇
  1988年   41篇
  1987年   54篇
  1986年   54篇
  1985年   50篇
  1984年   57篇
  1983年   46篇
  1982年   62篇
  1981年   53篇
  1980年   55篇
  1979年   24篇
  1978年   24篇
  1977年   30篇
  1976年   33篇
  1975年   33篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
RAD51 is a key factor in homologous recombination (HR) and plays an essential role in cellular proliferation by repairing DNA damage during replication. The assembly of RAD51 at DNA damage is strictly controlled by RAD51 mediators, including BRCA1 and BRCA2. We found that human RAD51 directly binds GEMIN2/SIP1, a protein involved in spliceosome biogenesis. Biochemical analyses indicated that GEMIN2 enhances the RAD51–DNA complex formation by inhibiting RAD51 dissociation from DNA, and thereby stimulates RAD51-mediated homologous pairing. GEMIN2 also enhanced the RAD51-mediated strand exchange, when RPA was pre-bound to ssDNA before the addition of RAD51. To analyze the function of GEMIN2, we depleted GEMIN2 in the chicken DT40 line and in human cells. The loss of GEMIN2 reduced HR efficiency and resulted in a significant decrease in the number of RAD51 subnuclear foci, as observed in cells deficient in BRCA1 and BRCA2. These observations and our biochemical analyses reveal that GEMIN2 regulates HR as a novel RAD51 mediator.  相似文献   
992.
We had previously exploited a method for targeted DNA methylation in budding yeast to succeed in one-hybrid detection of methylation-dependent DNA–protein interactions. Based on this finding, we developed a yeast one-hybrid system to screen cDNA libraries for clones encoding methylated DNA-binding proteins. Concurrent use of two independent bait sequences in the same cell, or dual-bait system, effectively reduced false positive clones, which were derived from methylation-insensitive sequence-specific DNA-binding proteins. We applied the dual-bait system to screen cDNA libraries and demonstrated efficient isolation of clones for methylated DNA-binding proteins. This system would serve as a unique research tool for epigenetics.  相似文献   
993.
Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase (RTK). We recently identified homozygous smallie mutant mice (BKS.HRS. Ddr2slie/slie/J, Ddr2slie/slie mutants), which lack a functional DDR2. Ddr2slie/slie mutant mice are dwarfed and infertile due to peripheral dysregulation of the endocrine system. To understand the role of DDR2 signaling in spermatogenesis, we studied the expression of several receptors, enzymes, and proteins related to spermatogenesis in wild‐type and Ddr2slie/slie mutant mice at 10 weeks and 5 months of age. DDR2 were expressed in adult wild‐type male mice in Leydig cells. The number of differentiated spermatozoa in the seminal fluid was significantly lower in the Ddr2slie/slie mutant mice than in the wild‐type mice. The number of TUNEL‐positive cells was significantly greater in 5‐month‐old Ddr2slie/slie mutants. Testosterone was significantly reduced at 5 months of age, but LH was similar in both types of mice at both 10 weeks and 5 months of age. The expression levels of LH receptors (Lhcgr), StAR, P450scc, and Hsd3β6 were not significantly different between the two types of mice at 10 weeks of age, but they were significantly reduced in 5‐month‐old Ddr2slie/slie mutants compared to wild‐type mice of the same age. DDR2 was expressed in the Leydig cells of adult wild‐type male mice. In conclusion, our results indicated that DDR2 signaling plays a critical role in the maintenance of male spermatogenesis. Mol. Reprod. Dev. 77: 29–37, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
994.
Microtubule (MT) nucleation and organization depend on the evolutionarily conserved protein γ -tubulin, which forms a complex with GCP2-GCP6 (GCP for γ -Tubulin Complex Protein). To date, it is still unclear how GCP4-GCP6 (the non-core GCPs) may be involved in acentrosomal MT nucleation in plant cells. We found that GCP4 was associated with γ -tubulin in vivo in Arabidopsis thaliana. When GCP4 expression was repressed by an artificial microRNA, transgenic plants exhibited phenotypes of dwarfism and reduced organ size. In mitotic cells, it was observed that the γ -tubulin signal associated with the mitotic spindle, and the phragmoplast was depleted when GCP4 was downregulated. Consequently, MTs failed to converge at unified spindle poles, and the bipolar phragmoplast MT array frequently had discrete bundles with extended minus ends, resulting in failed cytokinesis as reflected by cell wall stubs in leaf epidermal cells. In addition, cortical MTs in swollen guard cells and pavement cells of the leaf epidermis became hyperparallel and bundled, which was likely caused by frequent MT nucleation with shallow angles on the wall of extant MTs. Therefore, our results support the notion that GCP4 is an indispensable component for the function of γ -tubulin in MT nucleation and organization in plant cells.  相似文献   
995.
Rice (Oryza sativa) endosperm accumulates a massive amount of storage starch and storage proteins during seed development. However, little is known about the regulatory system involved in the production of storage substances. The rice flo2 mutation resulted in reduced grain size and starch quality. Map-based cloning identified FLOURY ENDOSPERM2 (FLO2), a member of a novel gene family conserved in plants, as the gene responsible for the rice flo2 mutation. FLO2 harbors a tetratricopeptide repeat motif, considered to mediate a protein-protein interactions. FLO2 was abundantly expressed in developing seeds coincident with production of storage starch and protein, as well as in leaves, while abundant expression of its homologs was observed only in leaves. The flo2 mutation decreased expression of genes involved in production of storage starch and storage proteins in the endosperm. Differences between cultivars in their responsiveness of FLO2 expression during high-temperature stress indicated that FLO2 may be involved in heat tolerance during seed development. Overexpression of FLO2 enlarged the size of grains significantly. These results suggest that FLO2 plays a pivotal regulatory role in rice grain size and starch quality by affecting storage substance accumulation in the endosperm.  相似文献   
996.
The C-terminal membrane domain of erythrocyte band 3 functions as an anion exchanger. Here, we report the three-dimensional (3D) structure of the membrane domain in an inhibitor-stabilized, outward-open conformation at 18 Å resolution. Unstained, frozen-hydrated tubular crystals containing the membrane domain of band 3 purified from human red blood cells (hB3MD) were examined using cryo-electron microscopy and iterative helical real-space reconstruction (IHRSR). The 3D image reconstruction of the tubular crystals showed the molecular packing of hB3MD dimers with dimensions of 60 × 110 Å in the membrane plane and a thickness of 70 Å across the membrane. Immunoelectron microscopy and carboxyl-terminal digestion demonstrated that the intracellular surface of hB3MD was exposed on the outer surface of the tubular crystal. A 3D density map revealed that hB3MD consists of at least two subdomains and that the outward-open form is characterized by a large hollow area on the extracellular surface and continuous density on the intracellular surface.  相似文献   
997.
CTRP3 (C1q and tumour necrosis factor‐related protein 3)/cartducin, a novel serum protein, is a member of the CTRP superfamily. Although the CTRP3/cartducin gene is markedly up‐regulated in rat carotid arteries after balloon injury, little is known about its biological roles in arterial remodelling and neointima formation in injured blood vessels. We have investigated the mechanisms underlying CTRP3/cartducin up‐regulation and the in vitro effects of CTRP3/cartducin on vascular smooth muscle cells. CTRP3/cartducin expression in cultured p53LMAC01 vascular smooth muscle cells was induced by TGF‐β1 (transforming growth factor‐β1), but not by bFGF (basic fibroblast growth factor) or PDGF‐BB (platelet‐derived growth factor‐BB). Exogenous CTRP3/cartducin promoted the proliferation of p53LMAC01 cells in a dose‐dependent manner via ERK1/2 (extracellular signal‐regulated kinase 1/2)‐ and MAPK (p38 mitogen‐activated protein kinase)‐signalling pathways. In contrast, CTRP3/cartducin exhibited no effect on the migration of p53LMAC01 cells. Taken together, the results of the present study demonstrate a novel biological role of CTRP3/cartducin in promoting vascular smooth muscle cell proliferation in blood vessel walls after injury.  相似文献   
998.
Many studies have been performed to accelerate osteoinduction and osteoconduction into porous ceramic scaffolds by seeding them with cells. In this study, we compared available cell-seeding methods on a porous β-tricalcium phosphate (β-TCP) scaffold and evaluated the effects of cell-seeding on the mechanical properties of the porous β-TCP scaffold. Three types of porous bioceramic scaffolds were used: dry scaffold, scaffold wetted with media, and scaffold cultivated with normal human osteoblasts (NHOs). Cell-seeding into the porous β-TCP scaffolds was performed by conventional, centrifuge, high-density, and vacuum methods. After confirming cell proliferation with MTT assay and cell staining, a compressive test was performed after 2 and 4 weeks of cell culture. The vacuum method based on the high-density cell culture inserted effectively NHOs into the β-TCP scaffolds. The compressive elastic modulus of wetted β-TCP scaffolds decreased significantly (p < 0.05) about 20∼30% after 2 and 4 weeks of incubation in comparison with that of the dry scaffold. However, the compressive strength of the scaffolds cultivated with NHOs for 3 weeks was significantly (p < 0.05) higher than that of scaffolds without NHOs. The vacuum with the high-density of cell-seeding seems to be a suitable method for seeding cells into complex porous ceramic scaffolds. Cell proliferation and uniform distribution in the scaffolds can change the initial mechanical properties of porous ceramic scaffolds.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号