首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18716篇
  免费   1153篇
  国内免费   3篇
  19872篇
  2022年   85篇
  2021年   209篇
  2020年   106篇
  2019年   169篇
  2018年   223篇
  2017年   222篇
  2016年   342篇
  2015年   528篇
  2014年   638篇
  2013年   1198篇
  2012年   1073篇
  2011年   1112篇
  2010年   749篇
  2009年   710篇
  2008年   1095篇
  2007年   1164篇
  2006年   1041篇
  2005年   1086篇
  2004年   1097篇
  2003年   1011篇
  2002年   926篇
  2001年   399篇
  2000年   379篇
  1999年   414篇
  1998年   275篇
  1997年   187篇
  1996年   176篇
  1995年   151篇
  1994年   140篇
  1993年   152篇
  1992年   224篇
  1991年   204篇
  1990年   198篇
  1989年   187篇
  1988年   151篇
  1987年   177篇
  1986年   154篇
  1985年   134篇
  1984年   121篇
  1983年   86篇
  1982年   108篇
  1981年   97篇
  1980年   82篇
  1979年   75篇
  1978年   73篇
  1977年   84篇
  1976年   55篇
  1975年   64篇
  1974年   66篇
  1973年   77篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
92.
Antioxidative enzymes in seedlings of Nelumbo nucifera germinated under water   总被引:12,自引:0,他引:12  
Dry seeds of anoxia-tolerant lotus ( Nelumbo nucifera Gaertn= Nelumbium speciosum Willd.) have green shoots with plastids containing chlorophyll, so photosynthesis starts even in seedlings germinated under water, namely hypoxia. Here we investigated antioxidative enzyme changes in N. nucifera seedlings responding to oxygen deficiency. The activity of superoxide dismutase (SOD; EC 1.15.1.1), dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2) were lower in seedlings germinated under water (submerged condition) in darkness (SD seedlings) than those found in seedlings germinated in air and darkness (AD seedlings). In contrast, ascorbate peroxidase (APX; EC 1.11.1.11) activity was higher in SD seedlings and the activity of catalase (EC 1.11.1.6) and monodehydroascorbate reductase (MDAR; EC 1.6.5.4) in SD seedlings was nearly the same as in AD seedlings. When SD seedlings were exposed to air, the activity of SOD, DHAR and GR increased, while the activity of catalase and MDAR decreased. Seven electrophoretically distinct SOD isozymes were detectable in N. nucifera . The levels of plastidic Cu,Zn-SODs and Fe-SOD in SD seedlings were comparable with those found in AD seedlings, which may reflect the maintenance of green plastids in SD seedlings as well as in AD seedlings. These results were substantially different from those previously found in rice seedlings germinated under water.  相似文献   
93.
Peptide:N-glycanase (PNGase) is the deglycosylating enzyme, which releases N-linked glycan chains from N-linked glycopeptides and glycoproteins. Recent studies have revealed that the cytoplasmic PNGase is involved in the degradation of misfolded/unassembled glycoproteins. This enzyme has a Cys, His, and Asp catalytic triad, which is required for its enzymatic activity and can be inhibited by "free" N-linked glycans. These observations prompted us to investigate the possible use of haloacetamidyl derivatives of N-glycans as potent inhibitors and labeling reagents of this enzyme. Using a cytoplasmic PNGase from budding yeast (Png1), Man9GlcNAc2-iodoacetoamide was shown to be a strong inhibitor of this enzyme. The inhibition was found to be through covalent binding of the carbohydrate to a single Cys residue on Png1, and the binding was highly selective. The mutant enzyme in which Cys191 of the catalytic triad was changed to Ala did not bind to the carbohydrate probe, suggesting that the catalytic Cys is the binding site for this compound. Precise determination of the carbohydrate attachment site by mass spectrometry clearly identified Cys191 as the site of covalent attachment. Molecular modeling of N,N'-diacetylchitobiose (chitobiose) binding to the protein suggests that the carbohydrate binding site is distinct from but adjacent to that of Z-VAD-fmk, a peptide-based inhibitor of this enzyme. These results suggest that cytoplasmic PNGase has a separate binding site for chitobiose and other carbohydrates, and haloacetamide derivatives can irreversibly inhibit that catalytic Cys in a highly specific manner.  相似文献   
94.
A gene trap approach to identify genes that control development   总被引:3,自引:0,他引:3  
One methodology called gene trap represents a versatile strategy by which murine genes that control developmental events can be captured and identified with corresponding mutants produced at the same time. Gene trap methodology has been developed and several genes and their mutants have been analyzed, but almost all of the genes reported are those already known or murine homologs of other species. In this study, the efficiency of the gene trap methodology was improved and a novel mutant mouse strain named jumonji established which displayed an intriguing defect. Homozygous fetal mice died in utero and a significant proportion of the homozygotes showed abnormal groove formation on the neural plate and a defect in neural tube closure with a mixed genetic background of 129/Ola and BALB/c. The trapped gene believed to be responsible for these phenotypes encodes a novel nuclear protein. The results reveal that the gene trap approach can identify unknown interesting genes in murine development. The gene trap strategy, however, has several problems, the greatest of which is the difficulty in prescreening embryonic stem (ES) cells for interesting trapped genes. Recent studies are solving this problem and show that the prescreening of ES cells for genes with several characteristics is possible.  相似文献   
95.
Itoh T  Fukuda M 《Autophagy》2011,7(9):1080-1081
Atg8 and its homologs are essential for autophagosome formation in various species. In animal cells, Atg8 homologs have an additional function in clearance of damaged organelles and bacteria, acting as a landmark for selective autophagy. We have recently shown that OATL1, a Rab-GTPase-activating protein (Rab-GAP), is a novel binding partner of Atg8 homologs in mammalian cells, but to our surprise, it is not a substrate of autophagy. Further analysis indicates that OATL1 is involved in the fusion between autophagosomes and lysosomes through its GAP activity and its Atg8 homolog binding activity. Our findings suggest a novel function of Atg8 homologs as a scaffold for signal transduction that regulates autophagosomal maturation.  相似文献   
96.
Cholesterol and phospholipids are essential to the body, but an excess of cholesterol or lipids is toxic and a risk factor for arteriosclerosis. ABCG1, one of the half-type ABC proteins, is thought to be involved in cholesterol homeostasis. To explore the role of ABCG1 in cholesterol homeostasis, we examined its subcellular localization and function. ABCG1 and ABCG1-K120M, a WalkerA lysine mutant, were localized to the plasma membrane in HEK293 cells stably expressing ABCG1 and formed a homodimer. A stable transformant expressing ABCG1 exhibited efflux of cholesterol and choline phospholipids in the presence of BSA, and the cholesterol efflux was enhanced by the presence of HDL, whereas cells expressing ABCG1-K120M did not, suggesting that ATP binding and/or hydrolysis is required for the efflux. Mass and TLC analyses revealed that ABCG1 and ABCA1 secrete several species of sphingomyelin (SM) and phosphatidylcholine (PC), and SMs were preferentially secreted by ABCG1, whereas PCs were preferentially secreted by ABCA1. These results suggest that ABCA1 and ABCG1 mediate the lipid efflux in different mechanisms, in which different species of phospholipids are secreted, and function coordinately in the removal of cholesterol and phospholipids from peripheral cells.  相似文献   
97.
98.
99.
100.
New genes in alkaloid metabolism and transport   总被引:10,自引:0,他引:10  
The biosynthetic pathway of plant alkaloids is composed of several distinct enzymes of varying substrate specificities. Homology-based cloning of candidate genes and their subsequent functional testing in heterologous expression systems are accelerating the pace at which the gene catalogues of alkaloid biosynthesis are expanding. Availability of diverse genes involved in the biosynthesis, catabolism, transport, and regulation of pharmaceutically important alkaloids should steadily advance our molecular understanding of alkaloid biology and will enable us to devise more rational strategies for metabolic engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号