首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13627篇
  免费   769篇
  国内免费   3篇
  2022年   48篇
  2021年   143篇
  2020年   93篇
  2019年   121篇
  2018年   167篇
  2017年   160篇
  2016年   256篇
  2015年   407篇
  2014年   469篇
  2013年   943篇
  2012年   868篇
  2011年   871篇
  2010年   577篇
  2009年   531篇
  2008年   884篇
  2007年   923篇
  2006年   834篇
  2005年   852篇
  2004年   861篇
  2003年   792篇
  2002年   757篇
  2001年   171篇
  2000年   161篇
  1999年   203篇
  1998年   213篇
  1997年   145篇
  1996年   137篇
  1995年   125篇
  1994年   113篇
  1993年   115篇
  1992年   138篇
  1991年   117篇
  1990年   96篇
  1989年   106篇
  1988年   64篇
  1987年   76篇
  1986年   66篇
  1985年   67篇
  1984年   76篇
  1983年   61篇
  1982年   75篇
  1981年   64篇
  1980年   61篇
  1979年   36篇
  1978年   38篇
  1977年   42篇
  1976年   47篇
  1975年   42篇
  1973年   33篇
  1971年   28篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
Unequal cleavage in the early Tubifex embryo   总被引:1,自引:0,他引:1  
Unequal cleavage that produces two blastomeres of different size is a cleavage pattern that many animals in a variety of phyla, particularly in Spiralia, adopt during early development. This cleavage pattern is apparently instrumental for asymmetric segregation of developmental potential, but it is also indispensable for normal embryogenesis in many animals. Mechanically, unequal cleavage is achieved by either simple unequal cytokinesis or by forming a polar lobe at the egg's vegetal pole. In the present paper, the mechanisms for unequal cytokinesis involved in the first three cleavages in the oligochaete annelid Tubifex are reviewed. The three unequal cleavages are all brought about by an asymmetrically organized mitotic apparatus (MA). The MA of the first cleavage is monastral in that an aster is present at one pole of a bipolar spindle but not at the other. This monastral form, which arises as a result of the involvement of a single centrosome in the MA assembly, is both necessary and sufficient for unequal first cleavage. The egg cortex during the first mitosis is devoid of the ability to remodel spindle poles. In contrast to the non-cortical mechanisms for the first cleavage, asymmetry in the MA organization at the second and third cleavages depends solely on specialized properties of the cell cortex, to which one spindle pole is physically connected. A cortical attachment site for the second cleavage spindle is generated de novo at the cleavage membrane resulting from the first cleavage; it is an actin-based, cell contact-dependent structure. The cortical microtubule attachment site for the third cleavage, which functions independently of contact with other cells, is not generated at the cleavage membrane resulting from the second cleavage, but is located at the animal pole; it may originate from the second polar body formation and become functional at the 4-cell stage.  相似文献   
993.
Asai, T., Howe, D. K., Nakajima, K., Nozaki, T., Takeuchi, T., and Sibley, L. D.Neospora caninum: Tachyzoites Express Type-I Nucleoside Triphosphate Hydrolase1. But Lack Nucleoside Diphosphate Hydrolase Activity.Experimental Parasitology90,277–285. We have identified type I nucleoside triphosphate hydrolase (NTPase; EC 3.6.1.3) activity, previously thought to be restricted to the virulent strains ofToxoplasma gondii, in the cell extracts ofNeospora caninumtachyzoites. Sequence analysis of a complete cDNA from Nc-1 strain indicated thatN. caninumNTPases shared approximately 69% identity to the NTPases ofT. gondiiand are most similar to the NTPase-I isozyme. Southern blot analysis of genomic DNA and sequence analysis of two independentNTPclones from the Nc-1 strain revealed the presence of multiple genes, at least two of which are transcribed. Substrate specificity andKmvalues for MgATP2−and MgADPhydrolysis for recombinant or partially purified native NcNTPase were the same as those for the type I isozyme (NTPase-I). Significantly, no type II enzyme (NTPase-II) activity for NDP hydrolysis was detected in cell extracts ofN. caninum, although it is universally present in allT. gondiistrains that have been tested. This intriguing difference between these two closely related apicomplexan parasites may provide insight into the function of the NTPases during intracellular parasitism.  相似文献   
994.
Free-living, aerobic, copiotrophic ultramicrobacteria (UMB) that passed through a 0.45 &mgr;m membrane filter and had a cell volume of less than 0.3 &mgr;m(3) were isolated from polluted urban soil by using both the direct plating method and the membrane-filter enrichment technique. The efficiency of recovering UMB from the soil was much higher in the latter method than in the former. All of the UMB isolates grew well with a doubling time of less than 6 h either in a complex nutrient medium or a chemically defined medium. The average cell volumes of the UMB isolates, as measured by scanning electron microscopy and epifluorescent microscopy with an image analysis, ranged from 0.07 to 0.22 &mgr;m(3). The cell size was larger at the exponential phase of growth than at the stationary growth stage in general. Ultrathin-section electron microscopy of representatives of the UMB isolates showed that they had complete cell wall structures like typical Gram-negative or -positive bacteria. Phenotypic studies and phylogenetic analyses on the basis of 16S rDNA sequences showed that the UMB isolates were classified into three major groups, the beta and gamma subdivisions of the Proteobacteria and the Actinobacteria (the high G+C DNA group of Gram-positives). However, none of these isolates were assigned to any previously known species. These results demonstrate that free-living, relatively fast-growing, copiotrophic UMB strains undescribed so far are widely distributed in terrestrial environments, including urban soil.  相似文献   
995.
Characterization of Leuconostoc species isolated from vacuum-packaged ham   总被引:1,自引:0,他引:1  
Thirty-six isolates of Leuconostoc spp. were isolated from yellow spots that occurred on the surface of vacuum-packaged ham. All isolates were Gram-positive, catalase-negative cocci that produced gas from glucose and formed more than 90% of their lactate as D(-) isomer. These isolates could grow at 4 degrees C but not above 30 degrees C and most strains produced yellow spots on the ham. The isolates were divided into three groups by sugar fermentation patterns. Representative strains from three groups showed intergroup DNA homology values of above 88.8%, showing that these groups were composed of a single species. This organism was positioned at a separate branch in the genus Leuconostoc on the phylogenetic tree based on 16S rRNA sequences, which was assigned to Leuconostoc gelidum on the basis of DNA-DNA relatedness.  相似文献   
996.
Sphingomonas paucimobilis SYK-6 transforms 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-dicarboxybiphenyl (DDVA), a lignin-related biphenyl compound, to 5-carboxyvanillic acid via 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA) as an intermediate (15). The ring fission of OH-DDVA is an essential step in the DDVA degradative pathway. A 15-kb EcoRI fragment isolated from the cosmid library complemented the growth deficiency of a mutant on OH-DDVA. Subcloning and deletion analysis showed that a 1.4-kb DNA fragment included the gene responsible for the ring fission of OH-DDVA. An open reading frame encoding 334 amino acids was identified and designated ligZ. The deduced amino acid sequence of LigZ had 18 to 21% identity with the class III extradiol dioxygenase family, including the β subunit (LigB) of protocatechuate 4,5-dioxygenase of SYK-6 (Y. Noda, S. Nishikawa, K.-I. Shiozuka, H. Kadokura, H. Nakajima, K. Yano, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki, J. Bacteriol. 172:2704–2709, 1990), catechol 2,3-dioxygenase I (MpcI) of Alcaligenes eutrophus JMP222 (M. Kabisch and P. Fortnagel, Nucleic Acids Res. 18:3405–3406, 1990), the catalytic subunit of the meta-cleavage enzyme (CarBb) for 2′-aminobiphenyl-2,3-diol from Pseudomonas sp. strain CA10 (S. I. Sato, N. Ouchiyama, T. Kimura, H. Nojiri, H. Yamane, and T. Omori, J. Bacteriol. 179:4841–4849, 1997), and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) of Escherichia coli (E. L. Spence, M. Kawamukai, J. Sanvoisin, H. Braven, and T. D. H. Bugg, J. Bacteriol. 178:5249–5256, 1996). The ring fission product formed from OH-DDVA by LigZ developed a yellow color with an absorption maximum at 455 nm, suggesting meta cleavage. Thus, LigZ was concluded to be a ring cleavage extradiol dioxygenase. LigZ activity was detected only for OH-DDVA and 2,2′,3,3′-tetrahydroxy-5,5′-dicarboxybiphenyl and was dependent on the ferrous ion.Lignin is the most common aromatic compound in the biosphere, and the degradation of lignin is a significant step in the global carbon cycle. Lignin is composed of various intermolecular linkages between phenylpropanes and guaiacyl, syringyl, p-hydroxyphenyl, and biphenyl nuclei (5, 34). Lignin breakdown therefore involves multiple biochemical reactions involving the cleavage of intermonomeric linkages, demethylations, hydroxylations, side-chain modifications, and aromatic ring fission (10, 11, 19, 40).Soil bacteria are known to display ample metabolic versatility toward aromatic substrates. Sphingomonas paucimobilis SYK-6 (formerly Pseudomonas paucimobilis SYK-6) has been isolated with 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-dicarboxybiphenyl (DDVA) as a sole carbon and energy source. This strain can also grow on syringate, 3-O-methylgallic acid (3OMGA), vanillate, and other dimeric lignin compounds, including β-aryl ether, diarylpropane (β-1), and phenylcoumaran (15). Analysis of the metabolic pathway has indicated that the dimeric lignin compounds are degraded to protocatechuate or 3OMGA (15) and that these compounds are cleaved by protocatechuate 4,5-dioxygenase encoded by ligAB (30). Among the dimeric lignin compounds, the degradation of β-aryl ether and the biphenyl structure is the most important, because β-aryl ether is most abundant in lignin (50%) and the biphenyl structure is so stable that its decomposition should be rate limiting in lignin degradation. We have already characterized the β-etherase and Cα-dehydrogenase genes (2326) (ligFE and ligD, respectively) involved in the degradation of β-aryl ether. In this study, we focused on the genes responsible for the degradation of DDVA in SYK-6.In the proposed DDVA metabolic pathway of S. paucimobilis SYK-6 illustrated in Fig. Fig.1A,1A, DDVA is first demethylated to produce the diol compound 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA). OH-DDVA is then degraded to 5-carboxyvanillic acid (5-CVA), and this compound is converted to 3OMGA (15). The resulting product is cleaved by protocatechuate 4,5-dioxygenase. A ring cleavage enzyme for OH-DDVA has been thought to be involved in this pathway because the production of 5-CVA from OH-DDVA resembles the formation of benzoic acid from biphenyl by 2,3-dihydroxybiphenyl through the sequential action of a meta cleavage enzyme and a meta-cleavage compound hydrolase (Fig. (Fig.1B)1B) (1, 9, 13, 18, 21, 28). Open in a separate windowFIG. 1(A) Proposed metabolic pathway for DDVA by S. paucimobilis SYK-6. (B) Pathway for the conversion of 2,3-dihydroxybiphenyl (2,3-DHBP) to benzoate by the polychlorinated biphenyl-degrading bacteria. The proposed DDVA metabolic pathway follows the previous one (15). Enzymes: LigZ, OH-DDVA oxygenase; LigAB, protocatechuate 4,5-dioxygenase; BphC, 2,3-dihydroxybiphenyl 1,2-dioxygenase; BphD, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase. TCA, tricarboxylic acid.In this study, we isolated the ligZ gene encoding a ring cleavage enzyme for OH-DDVA. The nucleotide sequence of the gene was determined, and the ligZ gene product was characterized.  相似文献   
997.
Glutamine production with bacterial glutamine synthetase (GS) and the sugar-fermenting system of baker’s yeast for ATP regeneration was investigated by determining the product yield obtained with the energy source for ATP regeneration (i.e., glucose) for yeast fermentation. Fructose 1,6-bisphosphate was accumulated temporarily prior to the formation of glutamine in mixtures which consisted of dried yeast cells, GS, their substrate (glucose and glutamate and ammonia), inorganic phosphate, and cofactors. By an increase in the amounts of GS and inorganic phosphate, the amounts of glutamine formed increased to 19 to 54 g/liter, with a yield increase of 69 to 72% based on the energy source (glucose) for ATP regeneration. The analyses of sugar fermentation of the yeast in the glutamine-producing mixtures suggested that the apparent hydrolysis of ATP by a futile cycle(s) at the early stage of glycolysis in the yeast cells reduces the efficiency of ATP utilization. Inorganic phosphate inhibits phosphatase(s) and thus improves glutamine yield. However, the analyses of GS activity in the glutamine-producing mixtures suggested that the higher concentration of inorganic phosphate as well as the limited amount of ATP-ADP caused the low reactivity of GS in the glutamine-producing mixtures. A result suggestive of improved glutamine yield under the conditions with lower concentrations of inorganic phosphate was obtained by using a yeast mutant strain that had low assimilating ability for glycerol and ethanol. In the mutant, the activity of the enzymes involved in gluconeogenesis, especially fructose 1,6-bisphosphatase, was lower than that in the wild-type strain.Glutamine is one of the most important compounds in nitrogen metabolism; it is not only a constituent of proteins but is also a donor of the amino (amido) moiety in the biosynthesis of other amino acids, purines, pyrimidines, pyridine coenzymes, and complex carbohydrates. Glutamine is also used in the treatment of gastric ulcers and has been produced commercially by direct fermentation with certain bacteria (610).In recent years, enzymatic synthesis has come to rival direct fermentation as a means of producing amino acids. In the case of glutamine, however, the need for a stoichiometric supply of ATP for the endoergonic reaction of glutamine synthetase (GS) precludes the development of an economically valuable method, unless ATP can be regenerated and recycled.Processes for the production of various substances using dried yeast cells as an enzyme source were established by Tochikura and colleagues (2, 4, 16, 1820). The processes are driven by the chemical energy of ATP released by the alcoholic fermentation by the yeast, which has been wasted in alcoholic brewing (17). Tochikura and colleagues also designed a process in which the yeast fermentation of sugar is combined with an endoergonic reaction catalyzed by an enzyme from a different microorganism (3). The results suggest that the process offers the possibility of producing many compounds at a high yield by using various biosynthetic reactions and high concentrations of substrates. Tochikura et al. introduced the general idea of coupled fermentation with energy transfer for the process; its principle is indicated in Fig. Fig.1,1, with glutamine production as an example. Open in a separate windowFIG. 1Scheme of glutamine production by the coupled fermentation with energy transfer method. ∗1, glycolytic pathway is abridged. ∗2, inorganic phosphate (Pi) is recycled.In the process of coupled fermentation with energy transfer, a catalytic amount of ATP is regenerated with the energy of sugar fermented by yeast, in the form of baker’s yeast (4, 16, 18, 19, 23). The energy-utilizing system for the synthesis can involve the enzyme(s) of yeast itself or those of other organisms. It should be noted that, from another point of view, the use of the energy-utilizing system results in ADP regeneration to complete the fermentation of glucose, and that, if there is no ADP regeneration, the yeast fermentation of sugar can proceed only as follows, in the presence of inorganic phosphate (the Harden-Young effect of inorganic phosphate [1]), 2 · glucose + 2 · inorganic phosphate → fructose 1,6-bisphosphate (FBP) + 2 · C2H5OH + 2 · CO2 (Harden-Young equation), where ADP regeneration for the fermentation of 1 mol of glucose is carried out by the phosphorylation of another mole of glucose to FBP.We previously reported glutamine production, obtained by employing a combination of baker’s yeast cells and GS from Gluconobacter suboxydans, as the first application of the coupled fermentation with energy transfer method for the production of a nonphosphorylated compound (12, 13). In addition, we achieved high-yield glutamine production by using the Corynebacterium glutamicum (Micrococcus glutamicus) enzyme and larger amounts of the substrates (15). The maximum amounts of glutamine formed (23 to 25 g/liter) and the yield based on glutamate (50 to 100%) were to some extent satisfactory, but the yield based on the energy source (glucose) for ATP regeneration was not satisfactory (about 40% of the theoretical value; 2 mol of glutamine can be formed when 1 mol of glucose is consumed).In the present study, we examined the characteristics of glutamine production regarding product yield based on the energy source for ATP regeneration and regarding the reactivity of GS during glutamine production, which is closely related to the product yield. The results of preliminary attempts to improve glutamine production are also described. In these experiments, a yeast mutant which has a low assimilating ability for glycerol and/or ethanol was used.  相似文献   
998.
999.
1000.
The activity of rß-cyanoalanine synthase (CAS, EC4.4.1.9 [EC] ) in cotyledons of cocklebur seeds (Xanthium penn-sylvanicumWallr.) was detected both in the soluble and particulate fractions.The CAS activity of the soluble fraction (cytosolic CAS activity)was 10 times higher than that of the particulate fraction. TheCAS activity of the particulate fraction was confirmed to belocalized in the mitochondria. Both enzymatic activities wereclearly separated by non-denaturing PAGE. The enzyme with cytosolicCAS activity has been extensively purified and separated intothree different forms designated as cyt-1, cyt-2, and cyt-3.According to the SDS-PAGE analysis, the three enzymes are estimatedto be a homodimer composed of 35-kDa sub-units. The purifiedenzymes showed CS activity. Partial amino acid sequences ofcyt-1 were determined and had a high homology with cysteinesynthases (CS, EC 4.2.99.8 [EC] ) from other plant sources. The catalyticaction of the purified CSs in converting cyanide and cysteineinto H2S and rß-cyanoalanine was confirmed by thedetection of significant 14CN incorporation into rß-cyanoalanine.These results indicated that cytosolic CAS activity is due tocytosolic CS and suggested that the CAS activity of CS is likelyto be involved in cyanide metabolism in plant tissues. (Received January 7, 1998; Accepted March 16, 1998)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号