首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107714篇
  免费   1153篇
  国内免费   903篇
  109770篇
  2022年   66篇
  2021年   158篇
  2020年   97篇
  2019年   135篇
  2018年   11975篇
  2017年   10812篇
  2016年   7705篇
  2015年   1024篇
  2014年   788篇
  2013年   1318篇
  2012年   5105篇
  2011年   13687篇
  2010年   12547篇
  2009年   8735篇
  2008年   10646篇
  2007年   12222篇
  2006年   1153篇
  2005年   1393篇
  2004年   1881篇
  2003年   1853篇
  2002年   1567篇
  2001年   461篇
  2000年   364篇
  1999年   280篇
  1998年   231篇
  1997年   174篇
  1996年   172篇
  1995年   134篇
  1994年   125篇
  1993年   158篇
  1992年   204篇
  1991年   200篇
  1990年   145篇
  1989年   151篇
  1988年   134篇
  1987年   118篇
  1986年   93篇
  1985年   94篇
  1984年   107篇
  1983年   93篇
  1982年   101篇
  1981年   81篇
  1980年   79篇
  1979年   77篇
  1978年   53篇
  1977年   64篇
  1976年   54篇
  1975年   68篇
  1972年   279篇
  1971年   305篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
A study was performed to validate 3 FMDV 3ABC-I-ELISA kits developed in China for the differentiation of FMDV infected and vaccinated animals. Sets of sera from naive and vaccinated cattle as well as from cattle that had been infected were tested for antibodies against nonstructural proteins (NSPs) of FMDV by commercial diagnosis kits, Ceditest® FMDV-NS (Ceditest® kit), UBI® FMDV NONSTRUCTURAL PROTEIN ELISA DIRECTION INSERT (UBI® kit) and a FMDV 3ABC-I-ELISA kit developed at the Lanzhou Veterinary Research Institute. The test parameters (sensitivity and specificity) of the three kits were determined, and the result obtained from FMD 3ABC-I-ELISA kit was compared with that obtained from two foreign kits. The results indicated that the coincidence rate between the FMDV 3ABC-I-ELISA and Ceditest® kits was 98.05%, and the coincidence rate between the FMDV 3ABC-I-ELISA and UBI® kits was 94.4%; the sensitivity of both Ceditest® and FMDV 3ABC-I-ELISA kit was 100%. However, the sensitivity of the UBI® kit was only 81.8%. With sera from naive or vaccinated non-infected animals, the specificity of all tests exceeded 90%.  相似文献   
102.
Yeast cells can respond and adapt to osmotic stress. In our attempt to clarify the molecular mechanisms of cellular responses to osmotic stress, we cloned seven cDNAs for hyperosmolarity-responsive (HOR) genes from Saccharomyces cerevisiae by a differential screening method. Structural analysis of the clones revealed that those designated HOR1, HORS, HOR4, HOR5 and HOR6 encoded glycerol-3-phosphate dehydrogenase (Gpd1p), glucokinase (Glklp), hexose transporter (Hxtlp), heat-shock protein 12 (Hsp12p) and Na+, K+, Li+-ATPase (Enalp), respectively. HOR2 and HOR7 corresponded to novel genes. Gpdlp is a key enzyme in the synthesis of glycerol, which is a major osmoprotectant in S. cerevisiae. Cloning of HOR1/GPD1 as a HOR gene indicates that the accumulation of glycerol in yeast cells under hyperosmotic stress is, at least in part, caused by an increase in the level of GPDH protein. We performed a series of Northern blot analyses using HOR cDNAs as probes and RNAs prepared from cells grown under various conditions and from various mutant cells. The results suggested that all the HOR genes are regulated by common signal transduction pathways. However, the fact that they exhibited certain distinct responses indicated that they might also be regulated by specific pathways in addition to the common pathways. Ca2+ seemed to be involved in the signaling systems. In addition, Hog1p, one of the MAP kinases in yeast, appeared to be involved in the regulation of expression of HOR genes, although its function seemed to be insufficient for the overall regulation of expression of these genes.  相似文献   
103.
Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.  相似文献   
104.
Aquaporin adipose (AQPap), which we identified from human adipose tissue, is a glycerol channel in adipocyte [Kishida et al. (2000) J. Biol. Chem. 275, 20896-20902]. In the current study, we determined the genomic structure of the human AQPap gene, and identified three AQPap-like genes that resembled (approximately 95%) AQPap, with little expression in human tissues. The AQPap promoter contained a putative peroxisome proliferator response element (PPRE) at -46 to -62, and a putative insulin response element (IRE) at -542/-536. Deletion of the PPRE abolished the pioglitazone-mediated induction of AQPap promoter activity in 3T3-L1 adipocytes. Deletion and single base pair substitution analysis of the IRE abolished the insulin-mediated suppression of the human AQPap gene. Analysis of AQPap sequence in human subjects revealed three missense mutations (R12C, V59L and G264V), and two silent mutations (A103A and G250G). The cRNA injection of the missense mutants into Xenopus oocytes revealed the absence of the activity to transport glycerol and water in the AQPap-G264V protein. In the subject homozygous for AQPap-G264V, exercise-induced increase in plasma glycerol was not observed in spite of the increased plasma noradrenaline. We suggest that AQPap is responsible for the increase of plasma glycerol during exercise in humans.  相似文献   
105.
A mannose-binding lectin (Narcissus tazetta lectin [NTL]) with potent antiviral activity was isolated and purified from the bulbs of the Chinese daffodil Narcissus tazetta var. chinensis, using ion exchange chromatography on diethylaminoethyl (DEAE)-cellulose, affinity chromatography on mannose-agarose and fast protein liquid chromatography (FPLC)-gel filtration on Superose 12. The purified lectin was shown to have an apparent molecular mass of 26 kDa by gel filtration and 13 kDa by SDS-PAGE, indicating that it is probably a dimer with two identical subunits. The cDNA-derived amino acid sequence of NTL as determined by molecular cloning also reveals that NTL protein contains a mature polypeptide consisting of 105 amino acids and a C-terminal peptide extension. Three-dimensional modelling study demonstrated that the NTL primary polypeptide contains three subdomains, each with a conserved mannose-binding site. It shows a high homology of about 60%–80% similarity with the existing monocot mannose-binding lectins. NTL could significantly inhibit plaque formation by the human respiratory syncytial virus (RSV) with an IC50 of 2.30 μg/ml and exhibit strong antiviral properties against influenza A (H1N1, H3N2, H5N1) and influenza B viruses with IC50 values ranging from 0.20 μg/ml to 1.33 μg/ml in a dose-dependent manner. It is worth noting that the modes of antiviral action of NTL against RSV and influenza A virus are significantly different. NTL is effective in the inhibition of RSV during the whole viral infection cycle, but the antiviral activity of NTL is mainly expressed at the early stage of the viral cycle of influenza A (H1N1) virus. NTL with a high selective index (SI=CC50/IC50≥141) resulting from its potent antiviral activity and low cytotoxicity demonstrates a potential for biotechnological development as an antiviral agent.  相似文献   
106.
Plants adapted to special soil types are ideal for investigating evolutionary processes, including maintenance of intraspecific variation, adaptation, reproductive isolation, ecotypic differentiation, and the tempo and mode of speciation. Common garden and reciprocal transplant approaches show that both local adaptation and phenotypic plasticity contribute to edaphic (soil-related) specialization. Edaphic specialists evolve rapidly and repeatedly in some lineages, offering opportunities to investigate parallel evolution, a process less commonly documented in plants than in animals. Adaptations to soil features are often under the control of major genes and they frequently have direct or indirect effects on genes that contribute to reproductive isolation. Both reduced competitiveness and greater susceptibility to herbivory have been documented among some edaphic specialists when grown in ‘normal’ soils, suggesting that a high physiological cost of tolerance may result in strong divergent selection across soil boundaries. Interactions with microbes, herbivores, and pollinators influence soil specialization either by directly enhancing tolerance to extremes in soil conditions or by reducing gene flow between divergent populations. Climate change may further restrict the distribution of edaphic specialists due to increased competition from other taxa or, expand their ranges, if preadaptations to drought or other abiotic stressors render them more competitive under a novel climate.  相似文献   
107.
Cutaneous leishmaniasis (CL) is gaining attention as a public health problem. We present two cases of CL imported from Syria and Venezuela in Japan. We diagnosed them as CL non-invasively by the direct boil loop-mediated isothermal amplification method and an innovative sequencing method using the MinION? sequencer. This report demonstrates that our procedure could be useful for the diagnosis of CL in both clinical and epidemiological settings.  相似文献   
108.
The target of rapamycin (Tor) protein plays central roles in cell growth. Rapamycin inhibits cell growth and promotes cell cycle arrest at G1 (G0). However, little is known about whether Tor is involved in other stages of the cell division cycle. Here we report that the rapamycin-sensitive Tor complex 1 (TORC1) is involved in G2/M transition in S. cerevisiae. Strains carrying a temperature-sensitive allele of KOG1 (kog1-105) encoding an essential component of TORC1, as well as yeast cell treated with rapamycin show mitotic delay with prolonged G2. Overexpression of Cdc5, the yeast polo-like kinase, rescues the growth defect of kog1-105, and in turn, Cdc5 activity is attenuated in kog1-105 cells. The TORC1-Type2A phosphatase pathway mediates nucleocytoplasmic transport of Cdc5, which is prerequisite for its proper localization and function. The C-terminal polo-box domain of Cdc5 has an inhibitory role in nuclear translocation. Taken together, our results indicate a novel function of Tor in the regulation of cell cycle and proliferation.  相似文献   
109.
Aluminum is associated with etiology of many neurodegenerative diseases specially Alzheimer’s disease. Chronic exposure to aluminum via drinking water results in aluminum deposition in the brain that leads to cognitive deficits. The study aimed to determine the effects of aluminum on cholinergic biomarkers, i.e., acetylcholine level, free choline level, and choline acetyltransferase gene expression, and how cholinergic deficit affects novel object recognition and sociability in mice. Mice were treated with AlCl3 (250 mg/kg). Acetylcholine level, free choline level, and choline acetyltransferase gene expression were determined in cortex, hippocampus, and amygdala. The mice were subjected to behavior tests (novel object recognition and social novelty preference) to assess memory deficits. The acetylcholine level in cortex and hippocampus was significantly reduced in aluminum-treated animals, as compared to cortex and hippocampus of control animals. Acetylcholine level in amygdala of aluminum-treated animals remained unchanged. Free choline level in all the three brain parts was found unaltered in aluminum-treated mice. The novel object recognition memory was severely impaired in aluminum-treated mice, as compared to the control group. Similarly, animals treated with aluminum showed reduced sociability compared to the control mice group. Our study demonstrates that aluminum exposure via drinking water causes reduced acetylcholine synthesis in spite of normal free choline availability. This deficit is caused by reduced recycling of acetylcholine due to lower choline acetyltransferase level. This cholinergic hypofunction leads to cognitive and memory deficits. Moreover, hippocampus is the most affected brain part after aluminum intoxication.  相似文献   
110.
The biotechnological production of recombinant proteins is challenged by processes that decrease the yield, such as protease action, aggregation, or misfolding. Today, the variation of strains and vector systems or the modulation of inducible promoter activities is commonly used to optimize expression systems. Alternatively, aggregation to inclusion bodies may be a desired starting point for protein isolation and refolding. The discovery of the twin-arginine translocation (Tat) system for folded proteins now opens new perspectives because in most cases, the Tat machinery does not allow the passage of unfolded proteins. This feature of the Tat system can be exploited for biotechnological purposes, as expression systems may be developed that ensure a virtually complete folding of a recombinant protein before purification. This review focuses on the characteristics that make recombinant Tat systems attractive for biotechnology and discusses problems and possible solutions for an efficient translocation of folded proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号