首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   15篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   7篇
  2014年   11篇
  2013年   6篇
  2012年   10篇
  2011年   6篇
  2010年   12篇
  2009年   12篇
  2008年   12篇
  2007年   15篇
  2006年   21篇
  2005年   12篇
  2004年   15篇
  2003年   18篇
  2002年   14篇
  2001年   9篇
  2000年   4篇
  1999年   5篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1988年   1篇
  1986年   3篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1965年   1篇
排序方式: 共有251条查询结果,搜索用时 15 毫秒
81.
Trp-containing pentapeptide was isolated from uremic fluid of an uremic patient by ultrafiltration with Amicon membranes followed by gel filtrations. The peptide thus obtained was identified as H-Asp-Leu-Trp-Gln-Lys-OH by amino acid analysis, manual Edman degradation method, physical constants and analytical data of synthetic pentapeptide. Structural similarity was soon realized between this peptide and pentapeptide moiety corresponding to position 123 through 127 of β-chain of fibrinogen. E-rosettes inhibition test was shown this pentapeptide to have an inhibition activity by amount more than l.Omg/ml.  相似文献   
82.
83.
Although the calpain-calpastatin system has been implicated in a number of pathological conditions, its normal physiological role remains largely unknown. To investigate the functions of this system, we generated conventional and conditional calpain-2 knockout mice. The conventional calpain-2 knockout embryos died around embryonic day 15, preceded by cell death associated with caspase activation and DNA fragmentation in placental trophoblasts. In contrast, conditional knockout mice in which calpain-2 is expressed in the placenta but not in the fetus were spared. These results suggest that calpain-2 contributes to trophoblast survival via suppression of caspase activation. Double-knockout mice also deficient in calpain-1 and calpastatin resulted in accelerated and rescued embryonic lethality, respectively, suggesting that calpain-1 and -2 at least in part share similar in vivo functions under the control of calpastatin. Triple-knockout mice exhibited early embryonic lethality, a finding consistent with the notion that this protease system is vital for embryonic survival.  相似文献   
84.
The stereoselectivity in the reduction of 4-benzoylpyridine (4-BP) was examined in the cytosolic fractions from the heart of 9 vertebrates (pig, rabbit, guinea pig, rat, mouse, chicken, soft-shelled turtle, frog and flounder). 4-BP was stereoselectively reduced to S(-)-alpha-phenyl-4-pyridylmethanol [S(-)-PPOL] in the cytosolic fractions from the heart of pig, rabbit and guinea pig. However, of mammalian heart cytsol tested, only rat heart cytosol had little ability to reduce stereoselectively 4-BP. In an attempt to elucidate this reason, amino acid sequence of rat heart carbonyl reductase (RatHCR) was deduced from the cloned cDNA and compared with that of pig heart carbonyl reductase (PigHCR), which shows a high stereoselectivity in the reduction of 4-BP to S(-)-PPOL. RatHCR showed a high identity with PigHCR in amino acid sequence. Furthermore, recombinant RatHCR was confirmed to reduce stereoselectively 4-BP to S(-)-PPOL with a high optical purity comparable to recombinant PigHCR. It is possible that in the cytosolic fraction from the heart of rat, constitutive reductase other than RatHCR counteracts the stereoselective reduction of 4-BP to S(-)-PPOL, by catalyzing the reduction of 4-BP to the R(+)-enantiomer.  相似文献   
85.
The ecological characteristics of 597 yellow and silver-stage Japanese eels, Anguilla japonica, were examined and compared among collection sites located at three different latitudes of Japan (Amakusa Islands, Mikawa Bay, and Sanriku Coast) to provide basic data on this unusual catadromous fish species. Eels were sexed and their total length, body weight, age, and growth rate based on otolith analysis was compared among sexes, stages, and collection sites. The overall sex ratio favored females (94%), but the sex ratio differed among the three locations. The frequency of females was highest in the coastal waters at Sanriku in the north (100%), next highest at Mikawa Bay in central Japan (95%), and lowest in the Amakusa Islands in the south (70%). Silver eel males ranged from 41.2-66.3 cm in length and 4-10 years in age, and silver eel females from 44.3-97.2 cm in length and 5-17 years in age. Female eels generally grew faster (8.7+/-2.2 cm/year) than males (6.4+/-2.6 cm/year), and the growth rate slowed in the older eels. The growth rate of A. japonica at all three sites was much faster than that of other temperate anguillid species (< 4 cm/year), and their age at maturation was younger than that of other temperate species (approximately 7 to > 50 years), suggesting this species has important ecological differences from other similar species.  相似文献   
86.
Chemical investigation of the glandular trichome exudate from Ceratotheca triloba (Pedaliaceae) led to the identification of nine 1-O-acetyl-2-O-[(R)-3-acetyloxy-fatty acyl]-3-O-malonylglycerols. Among these, 1-O-acetyl-2-O-[(R)-3-acetyloxyicosanoyl]-3-O-malonylglycerol (7) was the most abundant constituent (41%), followed by 1-O-acetyl-2-O-[(R)-(3-acetyloxyoctadecanoyl)-3-O-malonylglycerol (2; 21%). Compounds having iso- and anteiso-type structures in the 3-acetyloxy-fatty acyl groups in the fatty acyl moiety were also characterized as minor constituents. This is the first report of the isolation of malonylated glycerolipids as natural products.  相似文献   
87.
Amyloid beta peptide (Aβ) is not only a major constituent of extracellular fibrillary pathologies in Alzheimer's disease (AD) brains, but is also physiologically produced and metabolized in neurons. This fact led us to the notion that an age-related decrease in Aβ catabolism may contribute to the molecular pathogenesis of AD, providing a rationale for seeking proteolytic enzymes that degrade Aβ in the brain. Our recent studies have demonstrated that neprilysin is the most potent Aβ-degrading enzyme in vivo. Deficiency of endogenous neprilysin elevates the level of Aβ in brains of neprilysin-knockout mice in a gene dose-dependent manner, and an age-associated decline of neprilysin occurs in several regions of mouse brain. Neuropathological alterations in these same regions have been implicated in cognitive impairments of AD patients at an early stage of the disease. Furthermore, the level of neprilysin mRNA has been found to be significantly and selectively reduced in the hippocampus and temporal cortex of AD patients. A clarification of the role played by decreased neprilysin activity in the pathogenesis of AD has opened up the possibility of neprilysin up-regulation as a novel preventive and therapeutic approach to AD. Since the expression level and activity of neprilysin are likely to be regulated by neuropeptides and their receptors, non-peptidic agonists for these receptors might be effective agents to maintain a sufficient level of Aβ catabolism in brains of the elderly.In addition to Aβ deposits, intraneuronal fibrillary lesions, such as neurofibrillary tangles, are also a pathological hallmark of AD, and the extent of the resultant cytoskeletal disruptions may be dependent upon the activity levels of proteolytic enzymes. Among proteases for which major cytoskeletal components are good substrates, calpains were shown to participate in excitotoxic stress-induced neuritic degeneration in our recent analysis using genetically engineered mice. Moreover, we have found that this pathology can be reduced by controlling the activity of an endogenous calpain inhibitor known as calpastatin, providing a possible approach for the treatment of diverse neurodegenerative disorders, including AD.  相似文献   
88.
Compelling evidence suggests that N-terminally truncated and pyroglutamyl-modified amyloid-beta (Abeta) peptides play a major role in the development of Alzheimer's disease. Posttranslational formation of pyroglutamic acid (pGlu) at position 3 or 11 of Abeta implies cyclization of an N-terminal glutamate residue rendering the modified peptide degradation resistant, more hydrophobic, and prone to aggregation. Previous studies using artificial peptide substrates suggested the potential involvement of the enzyme glutaminyl cyclase in generation of pGlu-Abeta. Here we show that glutaminyl cyclase (QC) catalyzes the formation of Abeta 3(pE)-40/42 after amyloidogenic processing of APP in two different cell lines, applying specific ELISAs and Western blotting based on urea-PAGE. Inhibition of QC by the imidazole derivative PBD150 led to a blockage of Abeta 3(pE)-42 formation. Apparently, the QC-catalyzed formation of N-terminal pGlu is favored in the acidic environment of secretory compartments, which is also supported by double-immunofluorescence labeling of QC and APP revealing partial colocalization. Finally, initial investigations focusing on the molecular pathway leading to the generation of truncated Abeta peptides imply an important role of the amino acid sequence near the beta-secretase cleavage site. Introduction of a single-point mutation, resulting in an amino acid substitution, APP(E599Q), i.e., at position 3 of Abeta, resulted in significant formation of Abeta 3(pE)-40/42. Introduction of the APP KM595/596NL "Swedish" mutation causing overproduction of Abeta, however, surprisingly diminished the concentration of Abeta 3(pE)-40/42. The study provides new cell-based assays for the profiling of small molecule inhibitors of QC and points to conspicuous differences in processing of APP depending on sequence at the beta-secretase cleavage site.  相似文献   
89.
Cerebral deposition of beta-amyloid (Abeta) peptides is a pathological hallmark of Alzheimer disease. Intramembranous proteolysis of amyloid precursor protein by a multiprotein gamma-secretase complex generates Abeta. Previously, it was reported that CD147, a glycoprotein that stimulates production of matrix metalloproteinases (MMPs), is a subunit of gamma-secretase and that the levels of secreted Abeta inversely correlate with CD147 expression. Here, we show that the levels and localization of CD147 in fibroblasts, as well as postnatal expression and distribution in brain, are distinct from those of integral gamma-secretase subunits. Notably, we show that although depletion of CD147 increased extracellular Abeta levels in intact cells, membranes isolated from CD147-depleted cells failed to elevate Abeta production in an in vitro gamma-secretase assay. Consistent with an extracellular source that modulates Abeta metabolism, synthetic Abeta was degraded more rapidly in the conditioned medium of cells overexpressing CD147. Moreover, modulation of CD147 expression had no effect on epsilon-site cleavage of amyloid precursor protein and Notch1 receptor. Collectively, our results demonstrate that CD147 modulates Abeta levels not by regulating gamma-secretase activity, but by stimulating extracellular degradation of Abeta. In view of the known function of CD147 in MMP production, we postulate that CD147 expression influences Abeta levels by an indirect mechanism involving MMPs that can degrade extracellular Abeta.  相似文献   
90.
The life history in a brackish water type of the ninespine stickleback, Pungitius pungitius, was studied by examining the strontium (Sr) and calcium (Ca) concentrations in the otoliths. The fluctuating patterns of Sr/Ca ratios along the life history transect in the otoliths varied widely among fish in spite of their identification as brackish water type as estimated by morphological characteristics. More than 70% fish showed the intermediate otolith Sr/Ca ratio throughout, averaging 5.23–7.71 × 10−3. Besides this brackish water resident life history type of P. pungitius, other sticklebacks had anadromous (25%) and freshwater amphidromous (2.5%) life history types. These findings clearly indicate that the migration of the ninespine stickleback between fresh and sea waters is obligatory but facultative having an ability to utilize the full range of salinity in its life history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号