首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4805篇
  免费   267篇
  国内免费   2篇
  5074篇
  2022年   24篇
  2021年   31篇
  2019年   30篇
  2018年   43篇
  2017年   37篇
  2016年   72篇
  2015年   137篇
  2014年   135篇
  2013年   305篇
  2012年   224篇
  2011年   224篇
  2010年   145篇
  2009年   142篇
  2008年   201篇
  2007年   230篇
  2006年   223篇
  2005年   258篇
  2004年   273篇
  2003年   250篇
  2002年   246篇
  2001年   111篇
  2000年   108篇
  1999年   126篇
  1998年   64篇
  1997年   74篇
  1996年   57篇
  1995年   57篇
  1994年   51篇
  1993年   46篇
  1992年   82篇
  1991年   83篇
  1990年   74篇
  1989年   74篇
  1988年   83篇
  1987年   50篇
  1986年   59篇
  1985年   57篇
  1984年   45篇
  1983年   54篇
  1982年   56篇
  1981年   37篇
  1980年   40篇
  1979年   38篇
  1978年   28篇
  1977年   25篇
  1976年   24篇
  1975年   28篇
  1974年   34篇
  1973年   20篇
  1967年   16篇
排序方式: 共有5074条查询结果,搜索用时 14 毫秒
91.
In this paper, we executed genome mapping and comparative mapping analyses for cvd and hob, autosomal recessive mutations with cerebellar vermis defect and cerebellar dysplasia in the rat. For the linkage analysis, we produced three sets of backcross progeny, (ACI x CVD)F(1) and (F344 x CVD)F(1) females crossed to a cvd homozygous male rat, and (HOB x WKY)F(1) males crossed to hob homozygous female rats. Analysis of the segregation patterns of simple sequence length polymorphism (SSLP) markers scanning the whole rat genome allowed the mapping of these autosomal recessive mutations to rat Chromosome (Chr) 2. The most likely gene order is D2Mgh12 - D2Rat86 - D2Mit15 - D2Rat185 - cvd - D2Rat66 - D2Mgh13, and D2Mit18 - Fga -D2Mit14 - D2Rat16 - hob - D2Mgh13. Crossing test between a proven cvd heterozygous and a hob heterozygous rats demonstrated their allelism. Furthermore, comparative mapping indicated the cvd locus corresponds to mouse chromosome 3 and a strong candidate gene Unc5h3, a causative gene for the rostral cerebellar malformation mouse, was implicated.  相似文献   
92.
Chemerin is an attractant for cells that express the serpentine receptor CMKLR1, which include immature plasmacytoid dendritic cells (pDC) and macrophages. Chemerin circulates in the blood where it exhibits low biological activity, but upon proteolytic cleavage of its C terminus, it is converted to a potent chemoattractant. Enzymes that contribute to this conversion include host serine proteases of the coagulation, fibrinolytic, and inflammatory cascades, and it has been postulated that recruitment of pDC and macrophages by chemerin may serve to balance local tissue immune and inflammatory responses. In this work, we describe a potent, pathogen-derived proteolytic activity capable of chemerin activation. This activity is mediated by staphopain B (SspB), a cysteine protease secreted by Staphylococcus aureus. Chemerin activation is triggered by growth medium of clinical isolates of SspB-positive S. aureus, but not by that of a SspB(null) mutant. C-terminal processing by SspB generates a chemerin isoform identical with the active endogenous attractant isolated from human ascites fluid. Interestingly, SspB is a potent trigger of chemerin even in the presence of plasma inhibitors. SspB may help direct the recruitment of specialized host cells, including immunoregulatory pDC and/or macrophages, contributing to the ability of S. aureus to elicit and maintain a chronic inflammatory state.  相似文献   
93.
Evolution of the genome size in eukaryotes is often affected by changes in the noncoding sequences, for which insertions and deletions (indels) of small nucleotide sequences and amplification of repetitive elements are considered responsible. In this study, we compared the genomic DNA sequences of two kinds of fish, medaka (Oryzias latipes) and fugu (Takifugu rubripes), which show two-fold difference in the genome size (800 Mb vs. 400 Mb). We selected a contiguous DNA sequence of 790 kb from the medaka chromosome LG22 (linkage group 22), and made a precise comparison with the sequence (387 kb) of the corresponding region of Takifugu. The sequence of 178 kb in total was aligned common between two fishes, and the remaining sequences (612 kb for medaka and 209 kb for fugu) were found abundant in various repetitive elements including many types of unclassified low copy repeats, all of which accounted for more than a half (54%) of the genome size difference. Furthermore, we identified a significant difference in the length ratio of the unaligned sequences that locate between the aligned sequences (USBAS), particularly after eliminating known repetitive elements. These USBAS with no repetitive elements (USBAS-nr) located within the intron and intergenic region. These results strongly indicated that amplification of repetitive elements and compilation of indels are major driving forces to facilitate changes in the genome size.  相似文献   
94.
We established three monoclonal antibodies (Mabs) against the zonae pellucidae (ZP) of porcine oocytes, named STA-1, STA-2, and STA-3, and eventually we determined that they all reacted with the isolated ZP. Based on Western blotting without 2-mercaptoethanol (2-ME), STA-1 reacted with the 80,000-110,000 Mr component, STA-2 with the 42,000-63,000 Mr component, and STA-3 with the 40,000-80,000 Mr component of ZP. We immunohistochemically specified the components of porcine ZP reactive with the three Mabs during the course of follicular development. Each Mab reacted with both the ZP and the interfollicular cell space (IFCS). One ZP component, reactive with STA-2 and STA-3, was first produced in the primordial follicle and was not found at the cumulus follicle stage, which corresponds to the stage of large antral follicles more than 5 mm in diameter. Another ZP component, reactive with STA-1, was not produced until the secondary follicle stage, and was never found at the antral follicle stage. These results suggest that each ZP component is produced and secreted at a specific stage or stages of folliculogenesis.  相似文献   
95.
Endothelial cells play an important role in terms of biological functions by responding to a variety of stimuli in the blood. However, little is known about the molecular mechanism involved in rendering the variety in the cellular response. To investigate the variety of the cellular responses against exogenous stimuli at the gene expression level, we attempted to describe the cellular responses with comprehensive gene expression profiles, dissect them into multiple response patterns, and characterize the response patterns according to the information accumulated so far on the genes included in the patterns. We comparatively analyzed in parallel the gene expression profiles obtained with DNA microarrays from normal human coronary artery endothelial cells (HCAECs) stimulated with multiple cytokines, interleukin-1β, tumor necrosis factor-, interferon-β, interferon-γ, and oncostatin M, which are profoundly involved in various functional responses of endothelial cells. These analyses revealed that the cellular responses of HCAECs against these cytokines included at least 15 response patterns specific to a single cytokine or common to multiple cytokines. Moreover, we statistically extracted genes contained within the individual response patterns and characterized the response patterns with the genes referring to the previously accumulated findings including the biological process defined by the Gene Ontology Consortium (GO). Out of the 15 response patterns in which at least one gene was successfully extracted through the statistical approach, 11 response patterns were differentially characterized by representing the number of genes contained in individual criteria of the biological process in the GO only. The approach to dissect cellular responses into response patterns and to characterize the pattern at the gene expression level may contribute to the gaining of insight for untangling the diversity of cellular functions.  相似文献   
96.
To identify lobster phyllosoma larvae of the genus Panulirus occurring in waters adjacent to Japan, genetic variation within and between 10 Indo-Pacific lobster species was investigated using restriction fragment length polymorphism (RFLP) analysis for the 1300-base pair mitochondrial cytochrome oxidase I (COI) gene. RFLP analysis using two endonucleases (AluI and TaqI) enabled discrimination of all species, including the P. longipes complex. The diagnostic DNA markers, supplemented with nucleotide sequence analysis, were applied to 44 mid- to late-stage phyllosoma larvae (7.4 to 27.7 mm in body length) collected in the northwestern Pacific. These samples were unexpectedly variable in species composition, comprising P. japonicus (n = 16), P. longipes bispinosus (21), P. longipes longipes (1), P.aka” (1), and P. penicillatus (5). Comparison of larval size at similar stages revealed that P. l. bispinosus larvae were significantly larger than P. japonicus.  相似文献   
97.
To determine which part of the smooth muscle cells (SMCs) of the ductus arteriosus (DA) contribute to duct closure after birth, we looked for areas in which SM2 myosin heavy chain (MHC) mRNA expression, which is associated with contraction of smooth muscle, and apoptosis could be detected in the DA during development. In situ hybridization revealed that the SM2 MHC mRNA was strongly positive in the longitudinally oriented SMCs and inner layer of the circularly oriented SMCs just before birth. Apoptotic cells were detected in the SMCs of the DA from 1 day after birth. Histochemical analysis using terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling (TUNEL) revealed significant numbers of TUNEL-positive nuclei in the longitudinally oriented SMCs and the inner layer of the circularly oriented SMCs. Masson-stained sections showed that the TUNEL-positive area in the DA was replaced by connective tissue from 1 day after birth. These results suggest that the increase in the SM2 MHC mRNA expression and the induction of apoptosis are present at the same site in the media of the DA. Therefore, the SMCs in this area may play an important role in duct constriction and remodeling of the vessel wall after birth.  相似文献   
98.
99.
We studied the effect of transforming growth factor-beta 1 (TGF-beta 1) on colony formation of leukemic blast progenitors from ten acute myeloblastic leukemia (AML) patients stimulated with granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), interleukin-6 (IL-6), or interleukin-1 beta (IL-1 beta). These CSFs and interleukins by themselves stimulated the proliferation of leukemic blast progenitors without adding TGF-beta 1. G-CSF, GM-CSF, and IL-3 stimulated blast colony formation in nine patients, IL-6 stimulated it in five, and IL-1 beta stimulated in four. TGF-beta 1 significantly reduced blast colony formation stimulated by G-CSF, GM-CSF, or IL-6 in all patients. In contrast, TGF-beta 1 enhanced the stimulatory effect of IL-3 on blast progenitors from three cases, while in the other seven patients TGF-beta 1 reduced blast colony formation in the presence of IL-3. To study the mechanism by which TGF-beta 1 enhanced the stimulatory effect of IL-3 on blast progenitors, we carried out the following experiments in the three patients in which it occurred. First, the media conditioned by leukemic cells in the presence of TGF-beta 1 stimulated the growth of leukemic blast progenitors, but such effect was completely abolished by anti-IL-1 beta antibody. Second, the addition of IL-1 beta in the culture significantly enhanced the growth of blast progenitors stimulated with IL-3. Third, leukemic cells of the two patients studied were revealed to secrete IL-1 beta and tumor necrosis factor-alpha (TNF-alpha) constitutively; the production by leukemic cells of IL-1 beta and TNF-alpha was significantly promoted by TGF-beta 1. Furthermore, the growth enhancing effect of TGF-beta 1 in the presence of IL-3 was fully neutralized by anti-IL-1 beta antibody. These findings suggest that TGF-beta 1 stimulated the growth of blast progenitors through the production and secretion of IL-1 beta by leukemic cells.  相似文献   
100.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are valuable agents; however, their use has been limited by their association with mucosal damage in the upper gastrointestinal tract. NSAIDs inhibit cyclooxygenase and consequently block the synthesis of prostaglandins, which have cytoprotective effects in gastric mucosa; these effects on prostaglandins have been thought to be major cause of NSAID-induced ulceration. However, studies indicate that additional NSAID-related mechanisms are involved in formation of gastric lesions. Here, we used a toxicoproteomic approach to understand cellular processes that are affected by NSAIDs in mouse stomach tissue during ulcer formation. We used fluorogenic derivatization-liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS)-which consists of fluorogenic derivatization, separation and fluorescence detection by LC, and identification by LC-tandem mass spectrometry-in this proteomic analysis of pyrolic stomach from control and diclofenac (Dic)-treated mice. FD-LC-MS/MS results were highly sensitive; 10 differentially expressed proteins were identified, and all 10 were more highly expressed in Dic-treated mice than in control mice. Specifically, expression levels of 78 kDa glucose-regulated protein (GRP78), heat shock protein beta-1 (HSP27), and gastrin were more than 3-fold higher in Dic-treated mice than in control mice. This study represents a first step to ascertain the precise actors of early NSAID-induced ulceration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号