首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1189篇
  免费   56篇
  1245篇
  2022年   6篇
  2021年   14篇
  2020年   10篇
  2019年   11篇
  2018年   20篇
  2017年   21篇
  2016年   33篇
  2015年   55篇
  2014年   45篇
  2013年   92篇
  2012年   83篇
  2011年   68篇
  2010年   62篇
  2009年   56篇
  2008年   88篇
  2007年   95篇
  2006年   70篇
  2005年   76篇
  2004年   84篇
  2003年   74篇
  2002年   58篇
  2001年   6篇
  2000年   10篇
  1999年   10篇
  1998年   10篇
  1997年   9篇
  1996年   4篇
  1995年   5篇
  1994年   9篇
  1993年   2篇
  1992年   2篇
  1991年   7篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1976年   2篇
  1974年   2篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
  1968年   3篇
  1966年   1篇
排序方式: 共有1245条查询结果,搜索用时 0 毫秒
21.
Properties of cationic peptides bearing amino or guanidino groups with various side chain lengths that bind to double stranded RNAs (dsRNAs) were investigated. Peptides with shorter side chain lengths effectively bound to dsRNAs (12mers) increasing their thermal stability. NMR measurements suggested that the cationic peptide binds to the inner side of the major groove of dsRNA. These peptides also increased the thermal stability of siRNA and effectively protected from RNase A digestion. On the other hand, both peptides containing amino groups and guanidine groups did not disturb RNAi activity.  相似文献   
22.
We previously developed Hokushin wheat line as a hypoallergenic wheat lacking ω5-gliadin (1BS-18), a major allergen for wheat-dependent exercise-induced anaphylaxis. However, the allergenicity of 1BS-18 has not been understood completely. In this study, we evaluated the allergenicity of 1BS-18 such as anaphylactic elicitation ability and sensitization ability using rats sensitized with ω5-gliadin or glutens prepared from Hokushin (Hokushin gluten) or 1BS-18 (1BS-18 gluten). Rats were sensitized by intraperitoneal administration of ω5-gliadin, Hokushin gluten or 1BS-18 gluten. Immunoglobulin E-mediated systemic anaphylaxis was evaluated by measuring changes in rectal temperature for 30 min after intravenous challenge with ω5-gliadin or the test glutens in unsensitized rats or rats sensitized with ω5-gliadin or the test glutens. In ω5-gliadin-sensitized rats, intravenous challenge with ω5-gliadin or Hokushin gluten significantly decreased the rectal temperature at 30 min after challenge while challenge with 1BS-18 gluten did not reduce the rectal temperature. Furthermore, intravenous challenge with ω5-gliadin significantly decreased the rectal temperature in rats sensitized with Hokushin gluten or 1BS-18 gluten. However, the reduced degree observed in 1BS-18 gluten-sensitized rats was smaller than that in Hokushin gluten-sensitized rats. In conclusion, 1BS-18 elicited no allergic reaction in ω5-gliadin-sensitized rats and had less sensitization ability for ω5-gliadin than that of Hokushin wheat.  相似文献   
23.
Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5′ region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation.  相似文献   
24.
We previously reported on the use of enzymatic analysis to impair fatty acid metabolism followed by reduced myocardial energy content, leading to severe heart failure in adriamycin (ADR)-treated rats. The aim of this study is to investigate whether impaired myocardial energy metabolism can also be detected by other methods; i.e. measuring mitochondrial complex I activity and myocardial 125I-15-(p-iodophenyl)-3-(R,S)- methylpentadecanoic acid (BMIPP) accumulation in ADR-treated rats. Eight-week-old male Sprague-Dawley rats received 6 intraperitoneal injections of ADR (total 15 mg/kg: group ADR) or saline (control group) over 2 weeks. Left ventricular (LV) ejection fraction was assessed using echocardiography at 3- and 6-weeks after ADR injection (3 weeks and 6 weeks, respectively). Myocardial fatty acid utilization was assessed at 3 weeks and 6 weeks. The myocardial counts of BMIPP were measured after intravenous BMIPP (370 kBq) injection, and 125I counts were measured to calculate the uptake ratio. The enzymatic activity of complex I was assessed by monitoring the oxidation of nicotinamide-adenine-dinucleotide-disodium-salt (NADH). In rats treated with ADR, significant decrease in LV ejection fraction was observed only at 6 weeks compared to control (72.5 vs. 84.5%, p < 0.01rpar;. LV ejection fraction at 3 weeks was identical between group ADR and control (81.8 vs. 84.4%). However, at 3 weeks, complex I activity was already reduced significantly in group ADR as compared to control group (p = 0.03), but the reduction in BMIPP accumulation was not (p = 0.15). Our data indicated that reduced complex I activity in a phenomenon occurred in early phase of ADR-induced cardiomyopathy, and it might play an important role in the progression of ADR-induced heart failure.  相似文献   
25.
Shigella deliver a subset of effector proteins such as IpaA, IpaB and IpaC via the type III secretion system (TTSS) into host cells during the infection of colonic epithelial cells. Many bacterial effectors including some from Shigella require specific chaperones for protection from degradation and targeting to the TTSS. In this study, we have investigated the role of the icsB gene located upstream of the ipaBCDA operon in Shigella infection because the role of IcsB as a virulence factor remains unknown. Here, we found that the IcsB protein is secreted via the TTSS of Shigella in vitro and in vivo. We show that IpgA protein encoded by ipgA, the gene immediately downstream of icsB, serves as the chaperone required for the stabilization and secretion of IcsB. We have shown that IcsB binds to IpgA in bacterial cytosol and the binding site is in the middle of the IcsB protein. Intriguingly, although its significance in Shigella pathogenicity is as yet unclear, the icsB gene can be read-through into the ipgA gene to create a translational fusion protein. Furthermore, the contribution of IcsB to the pathogenicity of Shigella was demonstrated by plaque-forming assay and the Sereny test. The ability of the icsB mutant to form plaques was greatly reduced compared with that of the wild type in MDCK cell monolayers. Furthermore, when guinea pig eyes were infected with a non-polar icsB mutant, the bacteria failed to provoke keratoconjunctivitis. These results suggest that IcsB is secreted via the TTSS, chaperoned by IpgA, and required at the post-invasion stage of Shigella pathogenicity  相似文献   
26.
Mössbauer spectra of metapyrocatechase   总被引:1,自引:0,他引:1  
  相似文献   
27.
We have solved the solution structure of the N-terminal region of the fission yeast centromere protein, Abp1, bound to a 21-base pair DNA fragment bearing its recognition site (Mw = 30 kDa). Although the two DNA-binding domains in the Abp1 protein were defined well by a conventional NOE-based NMR methodology, the overall structure of the Abp1 protein was poorly defined, due to the lack of interdomain distance restraints. Therefore, we additionally used residual dipolar couplings measured in a weakly aligned state, and rotational diffusion anisotropies. Neither the NH residual dipolar couplings nor the backbone 15N T 1/T 2 data were sufficient to determine the overall structure of the Abp1 protein, due to spectral overlap. We used a combination of these two orientational restraints (residual dipolar coupling and rotational diffusion anisotropy), which significantly improved the convergence of the overall structures. The range of the observed T 1/T 2 ratios was wider (20–50 for the secondary structure regions of Abp1) than the previously reported data for several globular proteins, indicating that the overall shape of the Abp1DNA complex is ellipsoid. This extended form would facilitate the recognition of the two separate sites in the relatively long DNA sequence by the DNA-binding domains of Apb1.  相似文献   
28.
Understanding the rate at which various parts of a molecular chain come together to facilitate the folding of a biopolymer (e.g., a protein or RNA) into its functional form remains an elusive goal. Here we use experiments, simulations, and theory to study the kinetics of internal loop closure in disordered biopolymers such as single-stranded oligonucleotides and unfolded proteins. We present theoretical arguments and computer simulation data to show that the relationship between the timescale of internal loop formation and the positions of the monomers enclosing the loop can be recast in a form of a universal master dependence. We also perform experimental measurements of the loop closure times of single-stranded oligonucleotides and show that both these and previously reported internal loop closure kinetics of unfolded proteins are well described by this theoretically predicted dependence. Finally, we propose that experimental deviations from the master dependence can then be used as a sensitive probe of dynamical and structural order in unfolded proteins and other biopolymers.  相似文献   
29.
There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPARγ activation.  相似文献   
30.
The biosynthetic relationship between the two norlignans agatharesinol and trans-hinokiresinol was investigated. Fresh sapwood sticks of Cryptomeria japonica were fed with stable isotope-labeled compounds, namely p-coumaryl alcohol-[9,9-2H], p-coumaryl alcohol-[9-18O] and trans-hinokiresinol-[1-2H], and then incubated under high-humidity for approximately 20 days, during which the two norlignans were produced simultaneously. While trans-hinokiresinol was strongly deuterium-labeled after feeding with p-coumaryl alcohol-[9,9-2H], agatharesinol was only lightly labeled after feeding with either p-coumaryl alcohol-[9,9-2H] or -[9-18O]. These results suggest that p-coumaryl alcohol, which is a precursor of hinokiresinol, is not involved in the biosynthesis of agatharesinol. Therefore, the norlignan carbon skeleton of agatharesinol must be framed from different types of phenylpropanoid monomers compared to those utilized by the trans-hinokiresinol pathway. The biosynthesis of these two norlignans seems to branch at an early stage, i.e., before the framing of the norlignan carbon skeleton. Furthermore, agatharesinol was not labeled with deuterium after feeding with 2H-labeled trans-hinokiresinol, which has the simplest norlignan structure. This result strongly supports the suggestion that the conversion of trans-hinokiresinol to agatharesinol is not part of the biosynthesis of norlignans and that early branching occurs instead.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号