首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1153篇
  免费   53篇
  1206篇
  2022年   6篇
  2021年   14篇
  2020年   10篇
  2019年   10篇
  2018年   22篇
  2017年   22篇
  2016年   32篇
  2015年   57篇
  2014年   43篇
  2013年   92篇
  2012年   85篇
  2011年   69篇
  2010年   59篇
  2009年   56篇
  2008年   84篇
  2007年   89篇
  2006年   69篇
  2005年   74篇
  2004年   82篇
  2003年   70篇
  2002年   59篇
  2001年   8篇
  2000年   7篇
  1999年   8篇
  1998年   11篇
  1997年   7篇
  1996年   4篇
  1995年   5篇
  1994年   8篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1989年   2篇
  1986年   4篇
  1984年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1974年   2篇
  1972年   3篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
  1966年   2篇
排序方式: 共有1206条查询结果,搜索用时 15 毫秒
961.
We demonstrate in this study that both TIMP-1 and TIMP-2 are major serum factors that stimulate the induction of TIMP-1 mRNA in quiescent human gingival fibroblasts (Gin-1 cells) at mid-G1 (6-9 h after serum stimulation) of the cell cycle, but not that of TIMP-2. When we chased the secretion of both TIMP proteins into culture medium containing 10% FCS freed of both TIMPs, TIMP-2 secretion rose to the level in 10% FCS after 24 h, but TIMP-1 secretion remained at a fairly low level even after 3 days, thus reflecting a contrastive difference in the induction of both TIMP mRNAs. The stimulating activity of TIMP-1 on the expression of the TIMP-1 gene switched over to inhibitory activity, when the TIMP-1 concentration in the culture medium exceeded about 30 ng/ml. The depletion of TIMP-1 and TIMP-2 from FCS affected remarkably the induction of c-jun and c-fos mRNAs, but not that of c-ets-1 mRNA. TIMP-1 and TIMP-2-dependent expression of AP-1 protein was further demonstrated by using nuclear extracts of Gin-1 cells in an electrophoretic mobility shift assay.  相似文献   
962.
963.
Beta2-microglobulin (beta2-m), a protein responsible for dialysis-related amyloidosis, adopts an immunoglobulin domain fold in its native state. Although beta2-m has Trp residues at positions 60 and 95, both are located near the surface of the domain. Hence, beta2-m does not have a conserved Trp common to other immunoglobulin domains, which is buried in close proximity to the disulfide bond. To study the structure of amyloid fibrils in relation to their native fold, we prepared a series of Trp mutants. Trp60 and Trp95 were both replaced with Phe, and a single Trp was introduced at various positions. Among various mutants, W39-beta2-m, in which a Trp was introduced at the position corresponding to the conserved Trp, exhibited a remarkable quenching of fluorescence in the native state, as observed for other immunoglobulin domains. An x-ray structural analysis revealed that W39-beta2-m assumes the native fold with Trp39 located in the vicinity of the disulfide bond. Comparison of the fluorescence spectra of various mutants for the native and fibrillar forms indicated that, while the Trp residues introduced in the middle of the beta2-m sequence tend to be buried in the fibrils, those located in the C-terminal region are more exposed. In addition, the fluorescence spectra of fibrils prepared at pH 2.5 and 7.0 revealed a large difference in the fluorescence intensity for W60-beta2-m, implying a major structural difference between them.  相似文献   
964.
Dentin sialophosphoprotein (DSPP) is a major secretory product of odontoblasts and is critical for proper tooth dentin formation. During dentinogenesis, DSPP is proteolytically cleaved into smaller subunits. These cleavages are proposed activation steps, and failure to make these cleavages is a potential cause of developmental tooth defects. We tested the hypothesis that dentin-resident matrix metalloproteinases catalyze the cleavages that process DSPP. We defined the exact DSPP cleavages that are catalyzed by proteases during crown formation by isolating DSPP-derived proteins from developing porcine molars and characterizing their N-terminal sequences and apparent size on SDS-PAGE and Western blots. The in vivo DSPP cleavage sites were on the N-terminal sides of Thr(200), Ser(330), Val(353), Leu(360), Ile(362), Ser(377), Ser(408), and Asp(458). The initial DSPP cleavage is between dentin glycoprotein (DGP) and dentin phosphoprotein (DPP), generating dentin sialoprotein (DSP)/DGP and DPP. Gelatin and casein zymograms identified MMP-2, MMP-20, and KLK4 in the dentin extracts. MMP-2 and MMP-20 were purified from over 150 g of porcine dentin powder and incubated with DSP-DGP and DPP. These enzymes show no activity in further cleaving DPP. MMP-20 cleaves DSP-DGP to generate DSP and DGP. MMP-20 also cleaves DSP at multiple sites, releasing N-terminal DSP cleavage products ranging in size from 25 to 38 kDa. MMP-2 makes multiple cleavages near the DSP C terminus, releasing larger forms of DGP, or "extended DGPs." Exact correspondence between DSPP cleavage sites that occur in vivo and those generated in vitro demonstrates that MMP-2 and MMP-20 process DSPP into smaller subunits in the dentin matrix during odontogenesis.  相似文献   
965.
966.
This study sought to clarify the contributions of organic anion-transporting polypeptide (OATP) 1B1 and 1B3 to the liver uptake of chenodeoxycholic acid (CDCA). We synthesized a fluorescent version of CDCA, chenodeoxychilyl-(Nepsilon-NBD)-lysine (CDCA-NBD), to characterize transporter-mediated uptake. CDCA-NBD is efficiently transported by OATP1B1 and OATP1B3 with high affinities. The Michaelis-Menten constants for CDCA-NBD uptake by OATP1B1 and OATP1B3 were 1.45 +/- 0.39 microM and 0.54 +/- 0.09 microM, respectively. By confocal laser scanning microscopy, CDCA-NBD, which is taken up by OATP1B1 and OATP1B3, was observed to localize to the cytosol. We also examined the transport of newly synthesized fluorescent bile acids. NBD-labeled bile acids, including cholic acid, deoxycholic acid, lithocholic acid, and ursodeoxycholic acid, were all transported by OATP1B1 and OATP1B3. CDCA-NBD exhibited the highest rate of transport of the five NBD-labeled bile acids examined in OATP1B1- and OATP1B3-expressing cells. Our results suggest that OATP1B1 and OATP1B3 play important roles in CDCA uptake into the liver. Fluorescent bile acids are useful tools to characterize the uptake properties of membrane transporters.  相似文献   
967.
968.
969.
cDNA for an acid invertase (EC 3.2.1.26 [EC] ) of tomato (Lycopersiconesculentum Mill.) fruit was introduced into tomato plants underthe control of the cauliflower mosaic virus 35S promoter inthe antisense orientation. The antisense gene effectively suppressedthe invertase activity in soluble and cell wall fractions fromripening fruits. The sucrose content of fruits of the transformantswas markedly increased, while the hexose content was reduced.These results indicate that acid invertase is one of main determinantsof the sugar composition of tomato fruit. The invertase activityin the cell wall fraction of the leaf tissues of the transformantswas not suppressed to the same extent as that in the solublefraction. Wounding of the control leaf tissues induced invertaseactivity in both soluble and cell wall fractions. The inductionof activity in the soluble fraction was suppressed by the antisensegene, while that in the cell wall fraction was unaffected. Thesefindings suggest that mRNA for some other invertase, in particular,the mRNA for a cell wall-bound invertase, was present in leaves. 1Present address: Plant Breeding and Genetics Research Laboratory,Japan Tobacco Inc., 700 Higashibara, Toyoda, Iwata, Shizuoka,438 Japan. 2Present address: National Institute of Agrobiological Resources,Kannondai, Tsukuba, Ibaraki, 305 Japan.  相似文献   
970.
Karahara I  Ikeda A  Kondo T  Uetake Y 《Planta》2004,219(1):41-47
The Casparian strip in the endodermis of vascular plant roots appears to play an important role in preventing the influx of salts into the stele through the apoplast under salt stress. The effects of salinity on the development and morphology of the Casparian strip in primary roots of maize (Zea mays L.) were studied. Compared to the controls, the strip matured closer to the root tip with increase in the ambient concentration of NaCl. During growth in 200 mM NaCl, the number and the length of the endodermal cells in the region between the root tip and the lowest position of the endodermal strip decreased, as did the apparent rate of production of cells in single files of endodermal cells (the rate of cell formation being equal to the rate at which cells are lost from the meristem). The estimated time required for an individual cell to complete the formation of the strip after generation of the cell in the presence of 200 mM NaCl was not very different from that required in controls. Thus, salinity did not substantially affect the actual process of formation of the strip in individual cells. The radial width of the Casparian strip, a morphological parameter that should be related to the effectiveness of the strip as a barrier, increased in the presence of 200 mM NaCl. The mean width of the lignified region was 0.92 m in distilled water and 1.33 m in 200 mM NaCl at the lowest position of the strip. The mean width of the strip relative to that of the radial wall at this position was significantly greater after growth in the presence of 200 mM NaCl than in the controls, namely, 20.5% in distilled water and 33.9% in 200 mM NaCl. These observations suggest that the function of the strip is enhanced under salt stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号