首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   17篇
  247篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   10篇
  2015年   13篇
  2014年   9篇
  2013年   9篇
  2012年   26篇
  2011年   13篇
  2010年   10篇
  2009年   7篇
  2008年   10篇
  2007年   15篇
  2006年   13篇
  2005年   15篇
  2004年   16篇
  2003年   15篇
  2002年   14篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有247条查询结果,搜索用时 15 毫秒
51.
52.
The qkI gene encodes an RNA binding protein which was identified as a candidate for the classical neurologic mutation, qkv. Although qkI is involved in glial cell differentiation in mice, qkI homologues in other species play important roles in various developmental processes. Here, we show a novel function of qkI in smooth muscle cell differentiation during embryonic blood vessel formation. qkI null embryos died between embryonic day 9.5 and 10.5. Embryonic day 9.5 qkI null embryos showed a lack of large vitelline vessels in the yolk sacs, kinky neural tubes, pericardial effusion, open neural tubes and incomplete embryonic turning. Using X-gal and immunohistochemical staining, qkI is first shown to be expressed in endothelial cells and smooth muscle cells. Analyses of qkI null embryos in vivo and in vitro revealed that the vitelline artery was too thin to connect properly to the yolk sac, thereby preventing remodeling of the yolk sac vasculature, and that the vitelline vessel was deficient in smooth muscle cells. Addition of QKI and platelet-endothelial cell adhesion molecule-1 positive cells to an in vitro para-aortic splanchnopleural culture of qkI null embryos rescued the vascular remodeling deficit. These data suggest that QKI protein has a critical regulatory role in smooth muscle cell development, and that smooth muscle cells play an important role in inducing vascular remodeling.  相似文献   
53.
Tripeptide was produced during the permeation of a gelatin solution through the pore of a collagenase-immobilized porous hollow-fiber membrane. Gelatin was obtained via hydrolysis of fish collagen. First, an epoxy-group-containing monomer was graft-polymerized onto an electron-beam-irradiated porous hollow-fiber membrane. Second, the 2-hydroxyethylamino group was introduced into the epoxy group to bind collagenase on the basis of electrostatic interaction. Third, adsorbed collagenase was cross-linked with glutaraldehyde to prevent leakage of the enzyme. Gelatin solution (10-50 g/L) was forced to permeate across the collagenase-immobilized porous hollow-fiber membrane with a density of immobilized collagenase of 52 mg/g at various residence times of the gelatin solution ranging from 0.13 to 20 min. Fourteen percent in weight of 10 g/L gelatin solution was hydrolyzed into tripeptide at a residence time of 20 min.  相似文献   
54.
Previously we isolated human PEX16 encoding 336-amino acid-long peroxin Pex16p and showed that its dysfunction was responsible for Zellweger syndrome of complementation group D (group 9). Here we have determined the membrane topology of Pex16p by differential permeabilization method: both N- and C-terminal parts are exposed to the cytosol. In the search for Pex16p topogenic sequence, basic amino acids clustered sequence, RKELRKKLPVSLSQQK, at positions 66-81 and the first transmembrane segment locating far downstream, nearly by 40 amino acids, of this basic region were defined to be essential for integration into peroxisome membranes. Localization to peroxisomes of membrane proteins such as Pex14p, Pex13p, and PMP70 was interfered with in CHO-K1 cells by a higher level expression of the pex16 patient-derived dysfunctional but topogenically active Pex16pR176ter comprising resides 1-176 or of the C-terminal cytoplasmic part starting from residues at 244 to the C terminus. Furthermore, Pex16p C-terminal cytoplasmic part severely abrogated peroxisome restoration in pex mutants such as matrix protein import-defective pex12 and membrane assembly impaired pex3 by respective PEX12 and PEX3 expression, whereas the N-terminal cytosolic region did not affect restoration. These results imply that Pex16p functions in peroxisome membrane assembly, more likely upstream of Pex3p.  相似文献   
55.
PTB-like protein (PTBLP) is a new homologue of pyrimidine tract binding protein (PTB), and has been cloned as a possible autoantigen in cancer-associated retinopathy. PTBLP has two functional domains, the nuclear localization signal and the RNA recognition motifs (RRMs). Full-length PTBLP (PTBLP-L) has four RRMs, and its alternative splicing product (PTBLP-S) lacks the third and fourth RRMs. Although PTBLPs are expressed in neuronal tissues, the function of PTBLPs has not been determined. We have studed whether PTBLP plays a role in neuronal differentiation using PC12 cells. During the process of nerve growth factor-induced neuronal differentiation of PC12 cells, PTBLP-L was down-regulated whereas PTBLP-S was up-regulated. Transfection of PTBLP-L into PC12 cells led to the suppression of neuronal differentiation. In PTBLP-S transfected cells, however, this suppression was not evident. When both PTBLP-L and PTBLP-S were co-transfected, the suppressive effect of PTBLP-L decreased. In differentiated cells, PTBLP-S localized in the nucleus and PTBLP-L was found dispersed throughout the cytoplasm and neuronal growth cone. These findings suggest that PTBLP-L acts as a negative regulator of neuronal differentiation and PTBLP-S acts as a competitor of PTBLP-L.  相似文献   
56.
17-O-Acetyl testosterone, which has no susceptible hydroxyl or carboxyl group for glycosylation, was glycosylated with 2,3,4,6-tetra-O-acetyl-α- -glucopyranosyl bromide in the presence of a mixed catalyst, Hg(CN)2 and HgBr2, in benzene–nitromethane. Reaction occurred on the α,β-unsaturated ketone on the six–membered A-ring to give six 3-O-glycosides, each bearing a cyano group at the 3- or 5-position of the aglycon, and a 3-O-glycoside bearing a CONH2 group at the 3-position. Structural analyses of these products were carried out by various NMR (1H, 13C NMR, 1H–1H and 1H–13C COSY, HMBC, and DEPT), FABMS and X-ray analyses. The mechanisms of the formations of the products are discussed. It was determined that mercuric cyanide was essential as a catalyst for the progress of the cyanoglycosylation.  相似文献   
57.
The three-dimensional architecture of the tubular endocytic apparatus and the endoplasmic reticulum in the rat yolk-sac endoderm was investigated after loading with horseradish peroxidase-conjugated concanavalin A by intrauterine administration. After 30 min, small vesicles (50–150 nm in diameter), small tubules (80–100 nm in diameter) and large vacuoles (0.2–1.0 m in diameter) in the apical cytoplasm were labeled with the tracer, but lysosomes (1.0–3.5 m in diameter) in the supranuclear cytoplasm were not labeled until 60 min after loading. Stereo-viewing of the labeled small tubules in thick sections revealed that they were not isolated structures but formed three-dimensional anastomosing networks, which were also confirmed by scanning electron microscopy after maceration with diluted osmium tetroxide. Their earlier labeling with the endocytic tracer, localization in the apical cytoplasm and three-dimensional network formation indicated that the labeled small tubules represented tubular endosomes (tubular endocytic apparatus). These well-developed membranous networks provided by the tubular endosomes are suggested to facilitate the receptor-mediated endocytosis and transcytosis of the maternal immunoglobulin in the rat yolk-sac endoderm. Scanning electron microscopy further revealed lace-like networks of the smooth endoplasmic reticulum near the lateral plasma membrane. Their possible involvement in transport of small molecules or electrolytes is discussed.  相似文献   
58.
59.
Aldehyde dehydrogenase 2 (ALDH2) catalyses aldehyde species, including alcohol metabolites, mainly in the liver. We recently observed that ALDH2 is also expressed in skeletal muscle mitochondria; thus, we hypothesize that rs671 polymorphism-promoted functional loss of ALDH2 may induce deleterious effects in human skeletal muscle. We aimed to clarify the association of the ALDH2 rs671 polymorphism with muscle phenotypes and athletic capacity in a large Japanese cohort. A total of 3,055 subjects, comprising 1,714 athletes and 1,341 healthy control subjects (non-athletes), participated in this study. Non-athletes completed a questionnaire regarding their exercise habits, and were subjected to grip strength, 30-s chair stand, and 8-ft walking tests to assess muscle function. The ALDH2 GG, GA, and AA genotypes were detected at a frequency of 56%, 37%, and 7% among athletes, and of 54%, 37%, and 9% among non-athletes, respectively. The minor allele frequency was 25% in athletes and 28% in controls. Notably, ALDH2 genotype frequencies differed significantly between athletes and non-athletes (genotype: p = 0.048, allele: p = 0.021), with the AA genotype occurring at a significantly lower frequency among mixed-event athletes compared to non-athletes (p = 0.010). Furthermore, non-athletes who harboured GG and GA genotypes exhibited better muscle strength than those who carried the AA genotype (after adjustments for age, sex, body mass index, and exercise habits). The AA genotype and A allele of the ALDH2 rs671 polymorphism were associated with a reduced athletic capacity and poorer muscle phenotypes in the analysed Japanese cohort; thus, impaired ALDH2 activity may attenuate muscle function.  相似文献   
60.
The effect of human macrophage-colony-stimulating factor (hM-CSF) on tumoricidal activity was examined in athymic mice bearing the human ovarian cancer cell line, HRA, injected intraperitoneally (i.p.). The survival period and survival rate in the groups treated daily with hM-CSF were significantly longer (P<0.01) than in the untreated group. The peritoneal cell smears showed that ascitic tumor cells were markedly decreased in the hM-CSF-treated groups, and macrophages phagocytosed tumor cells, indicating a contact-mediated direct cytolysis. The combined therapeutic effects of cisplatin and hM-CSF on HRA-bearing athymic mice were also studied. The mean survival period was 25.4, 47.2, 42.4 and 67.4 days, respectively, in the untreated group, and in the groups treated with cisplatin alone, with hM-CSF alone, and with combined cisplatin and hM-CSF. The survival period and rate were significantly longer (P<0.01) in the group treated with combined cisplatin and hM-CSF than in those treated with cisplatin or hM-CSF alone, indicating the therapeutic effectiveness of the combined use. Morever, hM-CSF is effective against granulocytopenia due to bone marrow suppression caused by cisplatin. Our data demonstrate that hM-CSF administered i.p. has a tumoricidal activity in athymic mice bearing human ovarian cancer i.p., which is mediated by activated macrophages, and that the combined administration of cisplatin and hM-CSF has a significant therapeutic effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号