首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1124篇
  免费   57篇
  2022年   3篇
  2021年   21篇
  2020年   5篇
  2019年   7篇
  2018年   8篇
  2017年   14篇
  2016年   29篇
  2015年   30篇
  2014年   44篇
  2013年   80篇
  2012年   61篇
  2011年   63篇
  2010年   44篇
  2009年   41篇
  2008年   76篇
  2007年   66篇
  2006年   71篇
  2005年   73篇
  2004年   78篇
  2003年   90篇
  2002年   66篇
  2001年   18篇
  2000年   10篇
  1999年   11篇
  1998年   12篇
  1997年   19篇
  1996年   9篇
  1995年   4篇
  1994年   5篇
  1993年   11篇
  1992年   8篇
  1991年   2篇
  1990年   5篇
  1989年   6篇
  1988年   2篇
  1987年   8篇
  1986年   8篇
  1985年   5篇
  1984年   12篇
  1983年   7篇
  1982年   4篇
  1981年   9篇
  1980年   7篇
  1979年   6篇
  1976年   4篇
  1974年   2篇
  1973年   4篇
  1970年   3篇
  1968年   1篇
  1965年   2篇
排序方式: 共有1181条查询结果,搜索用时 31 毫秒
41.
We proposed that cortical organization for the execution of adequate licking in cats was processed under the control of two kinds of affiliated groups for face and jaw & tongue movements (Hiraba H, Sato T. 2005A. Cerebral control of face, jaw, and tongue movements in awake cats: Changes in regional cerebral blood flow during lateral feeding Somatosens Mot Res 22:307–317). We assumed the cortical organization for face movements from changes in MRN (mastication-related neuron) activities recorded at area M (motor cortex) and orofacial behaviors after the lesion in the facial SI (facial region in the primary somatosensory cortex). Although we showed the relationship between facial SI (area 3b) and area M (area 4δ), the property of area C (area 3a) was not fully described. The aim of this present study is to investigate the functional role of area C (the anterior part of the coronal sulcus) that transfers somatosensory information in facial SI to area M, as shown in a previous paper (Hiraba H. 2004. The function of sensory information from the first somatosensory cortex for facial movements during ingestion in cats Somatosens Mot Res 21:87--97). We examined the properties of MRNs in area C and changes in orofacial behaviors after the area C or area M lesion. MRNs in area C had in common RFs in the lingual, perioral, and mandibular parts, and activity patterns of MRNs showed both post- and pre-movement types. Furthermore, cats with the area C lesion showed similar disorders to cats with the area M lesion, such as the dropping of food from the contralateral mouth, prolongation of the period of ingestion and mastication, and so on. From these results, we believe firmly the organization of unilateral cortical processing in facial SI, area C, and area M for face movements during licking.  相似文献   
42.
In a previous paper (Hiraba and Sato ) we reported that an accurate mastication might be executed by the cortical processing in bilateral masticatory area (MA)and motor cortices. The aim of this study was to determine if cats with lesion of either unilateral or bilateral MA showed changes in mastication. After exploring mechanoreceptive fields and motor effects of mastication-related neurons (MRNs) in MA using the single unit recording and intracortical microstimulation methods, we made various lesions in MAs with injections of kainic acid (0.1%, 2.0?µl). Since the MA was divided into facial (F) and intraoral (I) projection areas as reported in the previous paper, cats with the unilateral lesion in F or I, and with the bilateral lesion in F & F, I & I or F & I (F on one side and I on other side) were prepared. Cats with unilateral lesion in F or I and with bilateral lesion in F & I showed no changes in mastication except for prolongation of the food intake and masticatory periods. Cats with bilateral lesion into F & F, or I & I showed wider jaw-opening during mastication. Particularly, the latter group showed enormous jaw-opening, delay in the start of mastication and difficulty in manipulating food on the tongue. In all cats with lesions of each type, masticatory and swallowing rhythms remained normal. These findings suggest that accurate mastication is executed by the close integration between F & F and I & I of the bilateral MA.  相似文献   
43.
Several epidemiological and preclinical studies suggest that non‐steroidal anti‐inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX), reduce the risk of Alzheimer's disease (AD) and can lower β‐amyloid (Aβ) production and inhibit neuroinflammation. However, follow‐up clinical trials, mostly using selective cyclooxygenase (COX)‐2 inhibitors, failed to show any beneficial effect in AD patients with mild to severe cognitive deficits. Recent data indicated that COX‐1, classically viewed as the homeostatic isoform, is localized in microglia and is actively involved in brain injury induced by pro‐inflammatory stimuli including Aβ, lipopolysaccharide, and interleukins. We hypothesized that neuroinflammation is critical for disease progression and selective COX‐1 inhibition, rather than COX‐2 inhibition, can reduce neuroinflammation and AD pathology. Here, we show that treatment of 20‐month‐old triple transgenic AD (3 × Tg‐AD) mice with the COX‐1 selective inhibitor SC‐560 improved spatial learning and memory, and reduced amyloid deposits and tau hyperphosphorylation. SC‐560 also reduced glial activation and brain expression of inflammatory markers in 3 × Tg‐AD mice, and switched the activated microglia phenotype promoting their phagocytic ability. The present findings are the first to demonstrate that selective COX‐1 inhibition reduces neuroinflammation, neuropathology, and improves cognitive function in 3 × Tg‐AD mice. Thus, selective COX‐1 inhibition should be further investigated as a potential therapeutic approach for AD.  相似文献   
44.
We report here that Tyrophagus similis and Tyrophagus putrescentiae (Astigmata: Acaridae) have the ability to biosynthesize linoleic acid [(9Z, 12Z)-9, 12-octadecadienoic acid] via a Δ12-desaturation step, although animals in general and vertebrates in particular appear to lack this ability. When the mites were fed on dried yeast enriched with d31-hexadecanoic acid (16:0), d27-octadecadienoic acid (18:2), produced from d31-hexadecanoic acid through elongation and desaturation reactions, was identified as a major fatty acid component of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in the mites. The double bond position of d27-octadecadienoic acid (18:2) of PCs and PEs was determined to be 9 and 12, respectively by dimethyldisulfide (DMDS) derivatization. Furthermore, the GC/MS retention time of methyl 9, 12-octadecadienoate obtained from mite extracts agreed well with those of authentic linoleic acid methyl ester. It is still unclear whether the mites themselves or symbiotic microorganisms are responsible for inserting a double bond into the Δ12 position of octadecanoic acid. However, we present here the unique metabolism of fatty acids in the mites.  相似文献   
45.
Two paralytic shellfish toxins, gonyautoxin V and gonyautoxin VI, isolated from a tropical dinoflagellate, Pyrodinium bahamense var. compressa, were identified respectively to be derivatives of saxitoxin and neosaxitoxin with a sulfonatocarbamoyl moiety.  相似文献   
46.
We studied the inhibitory effects of isorhamnetin on mushroom tyrosinase by inhibition kinetics and computational simulation. Isorhamnetin reversibly inhibited tyrosinase in a mixed-type manner at K i=0.235 ± 0.013 mM. Measurements of intrinsic and 1-anilinonaphthalene-8-sulfonate(ANS)-binding fluorescence showed that isorhamnetin did not induce significant changes in the tertiary structure of tyrosinase. To gain insight into the inactivation process, the kinetics were computed via time-interval measurements and continuous substrate reactions. The results indicated that inactivation induced by isorhamnetin was a first-order reaction with biphasic processes. To gain further insight, we simulated docking between tyrosinase and isorhamnetin. Simulation was successful (binding energies for Dock6.3: ?32.58 kcal/mol, for AutoDock4.2: ?5.66 kcal/mol, and for Fred2.2: ?48.86 kcal/mol), suggesting that isorhamnetin interacts with several residues, such as HIS244 and MET280. This strategy of predicting tyrosinase interaction in combination with kinetics based on a flavanone compound might prove useful in screening for potential natural tyrosinase inhibitors.  相似文献   
47.
48.
To improve cancer immunotherapy, it is important to understand how tumor cells counteract immune-surveillance. In this study, we sought to identify cell-surface molecules associated with resistance of leukemia cells to cytotoxic T cell (CTL)-mediated cytolysis. To this end, we first established thousands of monoclonal antibodies (mAbs) that react with MLL/AF9 mouse leukemia cells. Only two of these mAbs, designated R54 and B2, bound preferentially to leukemia cells resistant to cytolysis by a tumor cell antigen–specific CTLs. The antigens recognized by these mAbs were identified by expression cloning as the same protein, CD43, although their binding patterns to subsets of hematopoietic cells differed significantly from each other and from a pre-existing pan-CD43 mAb, S11. The epitopes of R54 and B2, but not S11, were sialidase-sensitive and expressed at various levels on leukemia cells, suggesting that binding of R54 or B2 is associated with the glycosylation status of CD43. R54high leukemia cells, which are likely to express sialic acid-rich CD43, were highly resistant to CTL-mediated cytolysis. In addition, loss of CD43 in leukemia cells or neuraminidase treatment of leukemia cells sensitized leukemia cells to CTL-mediated cell lysis. These results suggest that sialic acid-rich CD43, which harbors multiple sialic acid residues that impart a net negative surface charge, protects leukemia cells from CTL-mediated cell lysis. Furthermore, R54high or B2high leukemia cells preferentially survived in vivo in the presence of adaptive immunity. Taken together, these results suggest that the glycosylation status of CD43 on leukemia is associated with sensitivity to CTL-mediated cytolysis in vitro and in vivo. Thus, regulation of CD43 glycosylation is a potential strategy for enhancing CTL-mediated immunotherapy.  相似文献   
49.
50.
We investigated the effects of a short-term dietary zinc deficiency on bone metabolism. Zinc deficiency increased the mRNA expression of zinc uptake transporters such as Zip1, Zip13, and Zip14 in bone. However, zinc deficiency might not maintain zinc storage in bone, resulting in a decrease in bone formation through downregulation of the expression levels of osteoblastogenesis-related genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号