首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1089篇
  免费   55篇
  1144篇
  2023年   3篇
  2022年   3篇
  2021年   19篇
  2020年   6篇
  2019年   8篇
  2018年   6篇
  2017年   13篇
  2016年   31篇
  2015年   30篇
  2014年   40篇
  2013年   76篇
  2012年   61篇
  2011年   65篇
  2010年   42篇
  2009年   39篇
  2008年   76篇
  2007年   62篇
  2006年   72篇
  2005年   72篇
  2004年   71篇
  2003年   95篇
  2002年   66篇
  2001年   23篇
  2000年   12篇
  1999年   8篇
  1998年   15篇
  1997年   14篇
  1996年   8篇
  1995年   3篇
  1994年   5篇
  1993年   11篇
  1992年   11篇
  1991年   5篇
  1990年   7篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   11篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1976年   4篇
  1973年   4篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
  1968年   4篇
  1965年   1篇
排序方式: 共有1144条查询结果,搜索用时 9 毫秒
61.
The mechanisms by which Pi depletion rapidly regulates gene expression and cellular function have not been clarified. Here, we found a rapid increase in intracellular ionized calcium [Ca(2+)](i) by phosphate depletion in LLC-PK(1) cells using confocal microscopy with the green-fluorescence protein based calcium indicator "yellow cameleon 2.1." The increase of [Ca(2+)](i) was observed in the presence or absence of extracellular Ca(2+). At the same time, an approximately twofold increase in intracellular inositol 1,4,5-triphosphate (IP(3)) occurred in response to the acute Pi depletion in the medium. Furthermore, 2-aminoethoxydiphenyl borate completely blocked the [Ca(2+)](i) increase induced by Pi depletion. These results suggest that Pi depletion causes IP(3)-mediated release of Ca(2+) from intracellular Ca(2+) pools and rapidly increases [Ca(2+)](i) in LLC-PK(1) cells.  相似文献   
62.
63.
Homozygotes of the quail silver mutation, which have plumage color changes, also display a unique phenotype in the eye: during early embryonic development, the retinal pigment epithelium (RPE) spontaneously transdifferentiates into neural retinal tissue. Mitf is considered to be the responsible gene and to function similarly to the mouse microphthalmia mutation, and tissue interaction between RPE and surrounding mesenchymal tissue in organ culture has been shown to be essential for the initiation of the transdifferentiation process in which fibroblast growth factor (FGF) signaling is involved. The immunohistochemical results of the present study show that laminin and heparan sulfate proteoglycan, both acting as cofactors for FGF binding, are localized in the area of transdifferentiation of silver embryos much more abundantly than in wild-type embryos. More intense immunohistochemical staining with FGF-1 antibody, but not with FGF-2 antibody, is also found in the neural retina, RPE, and choroidal tissue of silver embryos than in wild-type embryos. HNK-1 immunohistochemistry revealed that clusters of HNK-1-positive cells (presumptive migrating neural crest cells) are frequently located around the developing eyes and in the posterior region of the silver embryonic eye. Finally, chick-quail chimerical eyes were made by grafting silver quail optic vesicles to chicken host embryos: in most cases, no transdifferentiation occurs in the silver RPE, but in a few cases, transdifferentiation occurs where silver quail cells predominate in the choroid tissue. These observations together with our previous in vitro study indicate that the silver mutation affects not only RPE cells but also cephalic neural crest cells, which migrate to the eye rudiment, and that these crest cells play an essential role in the transdifferentiation of RPE, possibly by modifying the FGF signaling pathway. The precise molecular mechanism involved in RPE-neural crest cell interaction is still unknown, and the quail silver mutation is considered to be a good experimental model for studying the role of neural crest cells in vertebrate eye development.  相似文献   
64.
While it has been reported that familial Alzheimer's disease (FAD)-linked mutants of amyloid precursor protein (APP) and presenilin (PS)2 induce neuronal cytotoxicity in a manner sensitive to antioxidant and pertussis toxin (PTX), little of the mechanism for PS1-mediated neuronal cell death has been characterized. We previously found that multiple mechanisms, different in detail, underlie cytotoxicities by two FAD-linked mutants of APP, using neuronal cells with an ecdysone-controlled expression system. Here we report that this system revealed that (i) low expression of FAD-linked M146L-PS1 caused neuronal cell death, whereas that of wild-type (wt)PS1 did not; (ii) mutation-specific cytotoxicity by M146L-PS1 was sensitive to antioxidant glutathione-ethyl-ester and resistant to Ac-DEVD-CHO; (iii) cytotoxicity by higher expression of wtPS1 was resistant to both; and (iv) cytotoxicity by M146L-PS1 was inhibited by PTX. It was also highly likely that the involved superoxide-generating enzyme was nitric oxide synthase (NOS), and that the PTX-sensitive cytotoxic signal by M146L-PS1 was mediated by none of the G(i/o) proteins. We conclude that M146L-PS1 activates a NOS-mediated cytotoxic pathway via a novel PTX target.  相似文献   
65.
PRELP (proline arginine-rich end leucine-rich repeat protein) is a heparin-binding leucine-rich repeat protein in connective tissue extracellular matrix. In search of natural ligands and biological functions of this molecule, we found that PRELP binds the basement membrane heparan sulfate proteoglycan perlecan. Also, recombinant perlecan domains I and V carrying heparan sulfate bound PRELP, whereas other domains without glycosaminoglycan substitution did not. Heparin, but not chondroitin sulfate, inhibited the interactions. Glycosaminoglycan-free recombinant perlecan domain V and mutated domain I did not bind PRELP. The dissociation constants of the PRELP-perlecan interactions were in the range of 3-18 nm as determined by surface plasmon resonance. As expected, truncated PRELP, without the heparin-binding domain, did not bind perlecan. Confocal immunohistochemistry showed that PRELP outlines basement membranes with a location adjacent to perlecan. We also found that PRELP binds collagen type I and type II through its leucine-rich repeat domain. Electron microscopy visualized a complex with PRELP binding simultaneously to the triple helical region of procollagen I and the heparan sulfate chains of perlecan. Based on the location of PRELP and its interaction with perlecan heparan sulfate chains and collagen, we propose a function of PRELP as a molecule anchoring basement membranes to the underlying connective tissue.  相似文献   
66.
P- and E-selectin mediate CD4+ Th1 cell migration into the inflamed skin in a murine contact hypersensitivity model. In this model, not only CD4+ T cells but also CD8+ T cells infiltrate the inflamed skin, and the role of CD8+ type 1 cytotoxic T (Tc1) cells as effector cells has been demonstrated. Here we show that in mice deficient in both P- and E-selectin, the infiltration of CD8+ T cells in the inflamed skin is reduced, suggesting the role of these selectins in CD8+ T cell migration. We directly studied the role of selectins using in vitro-generated Tc1 cells. These cells are able to migrate into the inflamed skin of wild-type mice. This migration is partially mediated by P- and E-selectin, as shown by the reduced Tc1 cell migration into the inflamed skin of mice deficient in both P- and E-selectin or wild-type mice treated with the combination of anti-P-selectin and anti-E-selectin Abs. During P- and E-selectin-mediated migration of Tc1 cells, P-selectin glycoprotein ligand-1 appears to be the sole ligand for P-selectin and one of the ligands for E-selectin. P- and E-selectin-independent migration of Tc1 cells into the inflamed skin was predominantly mediated by L-selectin. These observations indicate that all three selectins can mediate Tc1 cell migration into the inflamed skin.  相似文献   
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号