首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1472篇
  免费   119篇
  国内免费   1篇
  2021年   22篇
  2020年   7篇
  2019年   10篇
  2018年   22篇
  2017年   21篇
  2016年   23篇
  2015年   37篇
  2014年   58篇
  2013年   74篇
  2012年   70篇
  2011年   80篇
  2010年   35篇
  2009年   45篇
  2008年   86篇
  2007年   97篇
  2006年   78篇
  2005年   83篇
  2004年   86篇
  2003年   64篇
  2002年   58篇
  2001年   44篇
  2000年   44篇
  1999年   33篇
  1998年   20篇
  1997年   22篇
  1996年   6篇
  1995年   17篇
  1994年   8篇
  1993年   11篇
  1992年   25篇
  1991年   25篇
  1990年   28篇
  1989年   20篇
  1988年   26篇
  1987年   27篇
  1986年   14篇
  1985年   17篇
  1984年   18篇
  1983年   12篇
  1982年   15篇
  1981年   11篇
  1980年   7篇
  1979年   14篇
  1978年   9篇
  1977年   16篇
  1976年   8篇
  1975年   6篇
  1974年   8篇
  1972年   5篇
  1971年   5篇
排序方式: 共有1592条查询结果,搜索用时 31 毫秒
71.
A rapid and sensitive method is presented for the determination of micro-quantities (1 to 100 μg) of N-methyl carbamates as dinitrophenyl methylamine (DNP-MA) by electron capture gas liquid chromatography (GLC). The method described is characterized by rapidity and simplicity of procedure due to an improvement made in the present investigation, i.e., hydrolysis of an N-methyl carbamate and dinitrophenylation of the resulting methylamine with 2, 4-dinitro-1-fluorobenzene (DNFB) were accomplished simultaneously in a single reaction mixture. A novel approach was also made to eliminate unreacted DNFB by conversion to dinitrophenyl glycine (DNP-glycine).  相似文献   
72.
73.

Purpose

To develop a superior VAChT imaging probe for SPECT, radiolabeled (-)-OIDV and (+)-OIDV were isolated and investigated for differences in their binding affinity and selectivity to VAChT, as well as their in vivo activities.

Procedures

Radioiodinated o-iodo-trans-decalinvesamicol ([125I]OIDV) has a high binding affinity for vesicular acetylcholine transporter (VAChT) both in vitro and in vivo. Racemic [125I]OIDV was separated into its two optical isomers (-)-[125I]OIDV and (+)-[125I]OIDV by HPLC. To investigate VAChT binding affinity (Ki) of two OIDV isomers, in vitro binding assays were performed. In vivo biodistribution study of each [125I]OIDV isomer in blood, brain regions and major organs of rats was performed at 2,30 and 60 min post-injection. In vivo blocking study were performed to reveal the binding selectivity of two [125I]OIDV isomers to VAChT in vivo. Ex vivo autoradiography were performed to reveal the regional brain distribution of two [125I]OIDV isomers and (-)-[123I]OIDV for SPECT at 60 min postinjection.

Results

VAChT binding affinity (Ki) of (-)-[125I]OIDV and (+)-[125I]OIDV was 22.1 nM and 79.0 nM, respectively. At 2 min post-injection, accumulation of (-)-[125I]OIDV was the same as that of (+)-[125I]OIDV. However, (+)-[125I]OIDV clearance from the brain was faster than (-)-[125I]OIDV. At 30 min post-injection, accumulation of (-)-[125I]OIDV (0.62 ± 0.10%ID/g) was higher than (+)-[125I]OIDV (0.46 ± 0.07%ID/g) in the cortex. Inhibition of OIDV binding showed that (-)-[125I]OIDV was selectively accumulated in regions known to express VAChT in the rat brain, and ex vivo autoradiography further confirmed these results showing similar accumulation of (-)-[125I]OIDV in these regions. Furthermore, (-)-[123I]OIDV for SPECT showed the same regional brain distribution as (-)-[125I]OIDV.

Conclusion

These results suggest that radioiodinated (-)-OIDV may be a potentially useful tool for studying presynaptic cholinergic neurons in the brain.  相似文献   
74.
75.
76.
MyD88 is a cytoplasmic adaptor protein that is critical for Toll-like receptor (TLR) signaling. The subcellular localization of MyD88 is characterized as large condensed forms in the cytoplasm. The mechanism and significance of this localization with respect to the signaling function, however, are currently unknown. Here, we demonstrate that MyD88 localization depends on the entire non-TIR region and that the correct cellular targeting of MyD88 is indispensable for its signaling function. The Toll-interleukin I receptor-resistance (TIR) domain does not determine the subcellular localization, but it mediates interaction with specific TLRs. These findings reveal distinct roles for the TIR and non-TIR regions in the subcellular localization and signaling properties of MyD88.  相似文献   
77.
We have previously shown that a stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of lymph node metastasis, but not in that of distant metastasis, in oral squamous cell carcinoma (SCC). In this study, we investigated the role of the autocrine SDF-1/CXCR4 system, with a focus on distant metastasis in oral SCC cells. The immunohistochemical staining of SDF-1 and CXCR4 using primary oral SCCs and metastatic lymph nodes showed a significantly higher number of SDF-1-positive cases among the metastatic lymph nodes than among the primary oral SCCs, which was associated with a poor survival rate among those of the former group. The forced expression of SDF-1 in B88 cells, which exhibit functional CXCR4 and lymph node metastatic potential (i.e., the autocrine SDF-1/CXCR4 system), conferred enhanced cell motility and anchorage-independent growth potential onto the cells. Orthotopic inoculation of the transfectant into nude mice was associated with an increase in the number of metastatic lymph nodes and more aggressive metastatic foci in the lymph nodes. Furthermore, the SDF-1 transfectant (i.e., the autocrine SDF-1/CXCR4 system) exhibited dramatic metastasis to the lung after i.v. inoculation, whereas the mock transfectant (i.e., the paracrine SDF-1/CXCR4 system) did not. Under the present conditions, AMD3100, a CXCR4 antagonist, significantly inhibited the lung metastasis of the SDF-1 transfectant, ameliorated body weight loss, and improved the survival rate of tumor-bearing nude mice. These results suggested that, in cases of oral SCC, the paracrine SDF-1/CXCR4 system potentiates lymph node metastasis, but distant metastasis might require the autocrine SDF-1/CXCR4 system.  相似文献   
78.
The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1? radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA? formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430?nm during the S-state cycle.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号