首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   22篇
  409篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   6篇
  2014年   11篇
  2013年   20篇
  2012年   12篇
  2011年   14篇
  2010年   8篇
  2009年   14篇
  2008年   31篇
  2007年   19篇
  2006年   19篇
  2005年   25篇
  2004年   31篇
  2003年   20篇
  2002年   23篇
  2001年   9篇
  2000年   12篇
  1999年   19篇
  1998年   7篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   6篇
  1992年   12篇
  1991年   8篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
101.
Yamada A  Ishikura T  Yamato T 《Proteins》2004,55(4):1070-1077
Photoreceptor proteins serve as efficient nano-machines for the photoenergy conversion and the photosignal transduction of living organisms. For instance, the photoactive yellow protein derived from a halophilic bacterium has the p-coumaric acid chromophore, which undergoes an ultrafast photoisomerization reaction after light illumination. To understand the structure-function relationship at the atomic level, we used a computational method to find functionally important atoms for the photoisomerization reaction of the photoactive yellow protein. In the present study, a "direct" measure of the functional significance was quantitatively evaluated for each atom by calculating the partial atomic driving force for the photoisomerization reaction. As a result, we revealed the reaction mechanism in which the specific role of each functionally important atom has been well characterized in a systematic manner. In addition, we observed that this mechanism is strongly conserved during the thermal fluctuation of the photoactive yellow protein. We compared the experimental data of fluorescence decay constant of several different mutants and the present analysis. As a result, we found that the reaction rate constant is decreased when a large positive driving force is missing.  相似文献   
102.
In Drosophila melanogaster, apoptosis is controlled by the integrated actions of the Grim-Reaper (Grim-Rpr) and Drosophila Inhibitor of Apoptosis (DIAP) proteins (reviewed in refs 1 4). The anti-apoptotic DIAPs bind to caspases and inhibit their proteolytic activities. DIAPs also bind to Grim-Rpr proteins, an interaction that promotes caspase activity and the initiation of apoptosis. Using a genetic modifier screen, we identified four enhancers of grim-reaper-induced apoptosis that all regulate ubiquitination processes: uba-1, skpA, fat facets (faf), and morgue. Strikingly, morgue encodes a unique protein that contains both an F box and a ubiquitin E2 conjugase domain that lacks the active site Cys required for ubiquitin linkage. A reduction of morgue activity suppressed grim-reaper-induced cell death in Drosophila. In cultured cells, Morgue induced apoptosis that was suppressed by DIAP1. Targeted morgue expression downregulated DIAP1 levels in Drosophila tissue, and Morgue and Rpr together downregulated DIAP1 levels in cultured cells. Consistent with potential substrate binding functions in an SCF ubiquitin E3 ligase complex, Morgue exhibited F box-dependent association with SkpA and F box-independent association with DIAP1. Morgue may thus have a key function in apoptosis by targeting DIAP1 for ubiquitination and turnover.  相似文献   
103.
Flowerings and flower visitors were observed continuously in alowland dipterocarp forest in Sarawak, Malaysia, for 53 mo in1992-1996. Flower visitors of 270 plant species were observed orcollected, and pollinators were assessed by observing body contact tostigmas and anthers. We recognized 12 categories of pollination systems.Among them, plants pollinated by social bees included the largest numberof species (32%) and were followed by beetle-pollinated species(20%). Pollination systems were significantly related with somefloral characters (flowering time of day, reward, and floral shape), butnot with floral color. Based on the relationships between pollinatorsand floral characters, we described pollination syndromes found in alowland dipterocarp forest. The dominance of social bees and beetlesamong pollinators is discussed in relation to the general floweringobserved in dipterocarp forests of West Malesia. In spite of high plantspecies diversity and consequent low population densities of lowlanddipterocarp forests, long-distance-specific pollinators were uncommoncompared with theNeotropics.  相似文献   
104.
The ORF sll1468 of Synechocystis sp. PCC6803 was identifiedas a gene for rß-carotene hydroxylase by functionalcomplementation in a rß-carotene-producing Escherichiacoll. The gene product of ORF sll11468 added hydroxyl groupsto the rß-ionone rings of rß-carotene (rß,rß-carotene)to form zeaxanthin (rß,rß-carotene-3,3'-diol).This newly identified rß-carotene hydroxylase doesnot show overall amino acid sequence similarity to the knownrß-carotene hydroxylases. However, it showed significantsequence similarity to rß-carotene ketolases of marinebacteria and a green alga. (Received November 29, 1997; Accepted March 6, 1998)  相似文献   
105.
106.
We have cloned the structural gene (tdcB) of biodegradative threonine deaminase from Escherichia coli W strain by utilizing the polymerase chain reaction. The JM109/pUCTDA strain, which was obtained by transforming E. coli JM109 with a vector plasmid (pUCTDA) containing the cloned tdcB gene, produced a large amount of the enzyme corresponding to more than 5% of the total soluble protein. Amino acid sequence analysis of this recombinant enzyme showed that the amino acid sequence is identical to the nucleotide-deduced sequence of biodegradative threonine deaminase from E. coli K-12.  相似文献   
107.
Aspartase purified from Escherichia coli W cells was rapidly and irreversibly inactivated by L-aspartic-β-semialdehyde (ASA), a substrate analog, following pseudo-first order kinetics. The inactivation rate showed a tendency to saturate as the ASA concentration increased. The increase in pH and the addition of Mg2+ at the alkaline pH accelerated the inactivation. In addition to chemically synthesized ASA, modification of aspartase by enzymatically generated ASA was attempted. Since the reaction equilibrium of homoserine dehydrogenase is extremely unfavorable for ASA formation, glutamate dehydrogenase reaction was coupled to it. When aspartase was incubated with these two enzyme systems, a time-dependent inactivation was observed. L-Aspartate, a substrate for the enzyme, protected it from inactivation. Analysis of the sulfhydryl group indicated that among 9 sulfhydryl groups per enzyme subunit, one residue essential for the activity was involved in the ASA-mediated inactivation.  相似文献   
108.
Long-chain base phosphates (LCBPs) such as sphingosine-1-phosphate and phytosphingosine-1-phosphate function as abscisic acid (ABA)-mediated signaling molecules that regulate stomatal closure in plants. Recently, a glycoside hydrolase family 1 (GH1) β-glucosidase, Os3BGlu6, was found to improve drought tolerance by stomatal closure in rice, but the biochemical functions of Os3BGlu6 have remained unclear. Here we identified Os3BGlu6 as a novel GH1 glucocerebrosidase (GCase) that catalyzes the hydrolysis of glucosylceramide to ceramide. Phylogenetic and enzymatic analyses showed that GH1 GCases are widely distributed in seed plants and that pollen or anthers of all seed plants tested had high GCase activity, but activity was very low in ferns and mosses. Os3BGlu6 had high activity for glucosylceramides containing (4E,8Z)-sphingadienine, and GCase activity in leaves, stems, roots, pistils, and anthers of Os3BGlu6-deficient rice mutants was completely absent relative to that of wild-type rice. The levels of ceramides containing sphingadienine were correlated with GCase activity in each rice organ and were significantly lower in Os3BGlu6-deficient rice mutants than in the wild type. The levels of LCBPs synthesized from ceramides, especially the levels of sphingadienine-1-phosphate, were also correlated with GCase activity in each rice organ and were significantly lower in Os3BGlu6-deficient rice mutants than in the wild type. These results indicate that Os3BGlu6 regulates the level of ceramides containing sphingadienine, influencing the regulation of sphingadienine-1-phosphate levels and subsequent improvement of drought tolerance via stomatal closure in rice.  相似文献   
109.
Maturation of the neuromuscular junction is accompanied by molecular switching of acetylcholine receptor (AChR) channels from embryonic types with gamma-subunits to adult ones with epsilon-subunits after birth. As a step toward understanding the molecular mechanisms of the gamma-to-epsilon switch, we addressed the question of whether embryonic- and adult-type AChRs constitute different endplates during the transitional period. From analyses with double- or triple-staining with anti-gamma- and/or anti-epsilon-antibodies together with alpha-bungarotoxin, which binds to alpha-subunits, we demonstrated that during neonatal stages in mice, adult-type AChRs are incorporated into individual endplates expressing embryonic-AChRs and replace these embryonic-AChRs gradually. The main period of AChR transition in the mouse diaphragm was between postnatal days 5 (P5) and P7, similar to the period described previously in which endplates shift from multi-axon to single-axon innervation. This finding will help our understanding of the mechanisms of the gamma-to-epsilon switch during establishment of the neuromuscular junction.  相似文献   
110.
Amyloid deposition accompanies over 20 degenerative diseases in human, including Alzheimer's, Parkinson's, and prion diseases. Recent studies revealed the importance of other type of protein aggregates, e.g., non-specific aggregates, protofibrils, and small oligomers in the development of such diseases and proved their increased toxicity for living cells in comparison with mature amyloid fibrils. We carried out a comparative structural analysis of different monomeric and aggregated states of beta(2)-microglobulin, a protein responsible for hemodialysis-related amyloidosis. We investigated the structure of the native and acid-denatured states, as well as that of mature fibrils, immature fibrils, amorphous aggregates, and heat-induced filaments, prepared under various in vitro conditions. Infrared spectroscopy demonstrated that the beta-sheet compositions of immature fibrils, heat-induced filaments and amorphous aggregates are characteristic of antiparallel intermolecular beta-sheet structure while mature fibrils are different from all others suggesting a unique overall structure and assembly. Filamentous aggregates prepared by heat treatment are of importance in understanding the in vivo disease because of their stability under physiological conditions, where amyloid fibrils and protofibrils formed at acidic pH depolymerize. Atomic force microscopy of heat-induced filaments represented a morphology similar to that of the low pH immature fibrils. At a pH close to the pI of the protein, amorphous aggregates were formed readily with association of the molecules in native-like conformation, followed by formation of intermolecular beta-sheet structure in a longer time-scale. Extent of the core buried from the solvent in the various states was investigated by H/D exchange of the amide protons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号