首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   622篇
  免费   40篇
  2021年   8篇
  2020年   5篇
  2019年   6篇
  2018年   11篇
  2017年   7篇
  2016年   8篇
  2015年   20篇
  2014年   20篇
  2013年   66篇
  2012年   35篇
  2011年   33篇
  2010年   29篇
  2009年   26篇
  2008年   36篇
  2007年   40篇
  2006年   25篇
  2005年   26篇
  2004年   29篇
  2003年   24篇
  2002年   37篇
  2001年   19篇
  2000年   23篇
  1999年   17篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   6篇
  1990年   5篇
  1989年   11篇
  1988年   12篇
  1987年   6篇
  1986年   6篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1979年   3篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有662条查询结果,搜索用时 171 毫秒
161.
Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.  相似文献   
162.
In Mytilus mussels, paternal mitochondrial DNA (M type) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, it has been reported that female mussels generally have only maternal mtDNA (F type). In this study, we examined the mode of mtDNA transmission in Mytilus galloprovincialis using M and F type-specific primer sets. The ratio of M and F types were measured in each sample by SNaPshot. The M type was detected in the adductor muscle and female gonad of all females. In unfertilized eggs spawned by 84.6% of females (22/26), M type was also detected. The F type was more abundant than the M type in all females. Although the ratio of M type in females was very low, all females contained the M type. From these results, we propose a new possibility about DUI inheritance. The presence of M type in unfertilized eggs indicates that the M type of eggs may also contribute to M type inheritance.  相似文献   
163.
Cross-contamination between cultured cell lines can result in the generation of erroneous scientific data. Hence, it is very important to eliminate cell lines that are of an origin different from that being claimed. Inter-species contamination can be detected by various established methods, such as karyotype and isozyme analyses. However, it has been impossible to detect intraspecies cross-contamination prior to the development of technology to detect differences between cell lines at the molecular level. Recently, profiling of short tandem repeat (STR) polymorphisms has been established as a method for the analyses of gene polymorphism. Gene profiling by STR polymorphism (STR profiling) is a simple and reliable method to identify individual cell lines. Each human cell line currently provided by the Cell Engineering Division of the RIKEN BioResource Center was analyzed by STR profiling to authenticate its identity. We found that more than 10 human cell lines out of approximately 400 were in fact identical to a different cell line deposited in the collection, and therefore had been misidentified. We conclude that STR profiling is a useful and powerful method for eliminating cell lines that have been misidentified by cross-contamination or by other causes. Hence, STR profiling of human cell lines used in published research will likely be a prerequisite for publication in the future, so that the problem of misidentification of cell lines can be eliminated.  相似文献   
164.
Arsenic trioxide (ATO), a therapeutic reagent used for the treatment of acute promyelocytic leukemia, has recently been reported to increase human immunodeficiency virus type 1 infectivity. However, in this study, we have demonstrated that replication of genome-length hepatitis C virus (HCV) RNA (O strain of genotype 1b) was notably inhibited by ATO at submicromolar concentrations without cell toxicity. RNA replication of HCV-JFH1 (genotype 2a) and the release of core protein into the culture supernatants were also inhibited by ATO after the HCV infection. To clarify the mechanism of the anti-HCV activity of ATO, we examined whether or not PML is associated with this anti-HCV activity, since PML is known to be a target of ATO. Interestingly, we observed the cytoplasmic translocation of PML after treatment with ATO. However, ATO still inhibited the HCV RNA replication even in the PML knockdown cells, suggesting that PML is dispensable for the anti-HCV activity of ATO. In contrast, we found that N-acetyl-cysteine, an antioxidant and glutathione precursor, completely and partially eliminated the anti-HCV activity of ATO after 24 h and 72 h of treatment, respectively. In this context, it is worth noting that we found an elevation of intracellular superoxide anion radical, but not hydrogen peroxide, and the depletion of intracellular glutathione in the ATO-treated cells. Taken together, these findings suggest that ATO inhibits the HCV RNA replication through modulation of the glutathione redox system and oxidative stress.Hepatitis C virus (HCV) is the causative agent of chronic hepatitis, which progresses to liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped virus with a positive single-stranded 9.6-kb RNA genome, which encodes a large polyprotein precursor of approximately 3,000 amino acid residues. This polyprotein is cleaved by a combination of the host and viral proteases into at least 10 proteins in the following order: core, envelope 1 (E1), E2, p7, nonstructural 2 (NS2), NS3, NS4A, NS4B, NS5A, and NS5B (30).Alpha interferon has been used as an effective anti-HCV reagent in clinical therapy for patients with chronic hepatitis C. The current combination treatment with pegylated alpha interferon and ribavirin, a nucleoside analogue, has been shown to improve the sustained virological response rate to more than 50% (15). However, the adverse effects of the combination therapy and the limited efficacy against genotype 1b warrant the development of new anti-HCV reagents.Arsenic trioxide (ATO) (As2O3, arsenite) has been used as a therapeutic reagent in acute promyelocytic leukemia, which bears an oncogenic PML-retinoic acid receptor alpha fusion protein resulting from chromosomal translocation (51, 52, 68, 70). The ATO treatment induces complete remission through degradation of the aberrant PML-retinoic acid receptor α (70). The PML tumor suppressor protein is required for formation of the PML nuclear body (PML-NB), also known as nuclear dot 10 or the PML oncogenic domain, which is often disrupted by infection with DNA viruses, such as herpes simplex virus type 1, human cytomegalovirus, and Epstein-Barr virus (17). The treatment with ATO results in degradation of the PML protein and disruption of the PML-NB (70). Therefore, ATO has been become a useful probe for investigating the functions of the PML-NB, including cell growth, apoptosis, stress response, and viral infection. Indeed, ATO has been shown to increase retroviral infectivity, such as human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus infectivity, but the mechanisms of this change are not well understood (5, 6, 32, 44, 47, 50, 57). In contrast, ATO was recently reported to inhibit the replication of HCV subgenomic replicon RNA (24). However, it also remains unclear how ATO inhibits the HCV RNA replication. In this study, using genome-length HCV RNA replication systems, we investigated the molecular mechanism(s) of the anti-HCV activity of ATO, and we provide evidence that ATO inhibits HCV RNA replication through modulation of the glutathione redox system and oxidative stress.  相似文献   
165.
We have previously reported on the ubiquitylation and degradation of hepatitis C virus core protein. Here we demonstrate that proteasomal degradation of the core protein is mediated by two distinct mechanisms. One leads to polyubiquitylation, in which lysine residues in the N-terminal region are preferential ubiquitylation sites. The other is independent of the presence of ubiquitin. Gain- and loss-of-function analyses using lysineless mutants substantiate the hypothesis that the proteasome activator PA28γ, a binding partner of the core, is involved in the ubiquitin-independent degradation of the core protein. Our results suggest that turnover of this multifunctional viral protein can be tightly controlled via dual ubiquitin-dependent and -independent proteasomal pathways.Hepatitis C virus (HCV) core protein, whose amino acid sequence is highly conserved among different HCV strains, not only is involved in the formation of the HCV virion but also has a number of regulatory functions, including modulation of signaling pathways, cellular and viral gene expression, cell transformation, apoptosis, and lipid metabolism (reviewed in references 9 and 15). We have previously reported that the E6AP E3 ubiquitin (Ub) ligase binds to the core protein and plays an important role in polyubiquitylation and proteasomal degradation of the core protein (22). Another study from our group identified the proteasome activator PA28γ/REG-γ as an HCV core-binding partner, demonstrating degradation of the core protein via a PA28γ-dependent pathway (16, 17). In this work, we further investigated the molecular mechanisms underlying proteasomal degradation of the core protein and found that in addition to regulation by the Ub-mediated pathway, the turnover of the core protein is also regulated by PA28γ in a Ub-independent manner.Although ubiquitylation of substrates generally requires at least one Lys residue to serve as a Ub acceptor site (5), there is no consensus as to the specificity of the Lys targeted by Ub (4, 8). To determine the sites of Ub conjugation in the core protein, we used site-directed mutagenesis to replace individual Lys residues or clusters of Lys residues with Arg residues in the N-terminal 152 amino acids (aa) of the core (C152), within which is contained all seven Lys residues (Fig. (Fig.1A).1A). Plasmids expressing a variety of mutated core proteins were generated by PCR and inserted into the pCAGGS (18). Each core-expressing construct was transfected into human embryonic kidney 293T cells along with the pMT107 (25) encoding a Ub moiety tagged with six His residues (His6). Transfected cells were treated with the proteasome inhibitor MG132 for 14 h to maximize the level of Ub-conjugated core intermediates by blocking the proteasome pathway and were harvested 48 h posttransfection. His6-tagged proteins were purified from the extracts by Ni2+-chelation chromatography. Eluted protein and whole lysates of transfected cells before purification were analyzed by Western blotting using anticore antibodies (Fig. (Fig.1B).1B). Mutations replacing one or two Lys residues with Arg in the core protein did not affect the efficiency of ubiquitylation: detection of multiple Ub-conjugated core intermediates was observed in the mutant core proteins comparable to the results seen with the wild-type core protein as previously reported (23). In contrast, a substitution of four N-terminal Lys residues (C152K6-23R) caused a significant reduction in ubiquitylation (Fig. (Fig.1B,1B, lane 9). Multiple Ub-conjugated core intermediates were not detected in the Lys-less mutant (C152KR), in which all seven Lys residues were replaced with Arg (Fig. (Fig.1B,1B, lane 11). These results suggest that there is not a particular Lys residue in the core protein to act as the Ub acceptor but that more than one Lys located in its N-terminal region can serve as the preferential ubiquitylation site. In rare cases, Ub is known to be conjugated to the N terminus of proteins; however, these results indicate that this does not occur within the core protein.Open in a separate windowFIG. 1.In vivo ubiquitylation of HCV core protein. (A) The HCV core protein (N-terminal 152 aa) is represented on the top. The positions of the amino acid residues of the core protein are indicated above the bold lines. The positions of the seven Lys residues in the core are marked by vertical ticks. Substitution of Lys with Arg (R) is schematically depicted. (B) Detection of ubiquitylated forms of the core proteins. The transfected cells with core expression plasmids and pMT107 were treated with the proteasome inhibitor MG132 and harvested 48 h after transfection. His6-tagged proteins were purified and subsequently analyzed by Western blot analysis using anticore antibody (upper panel). Core proteins conjugated to a number of His6-Ub are denoted with asterisks. Whole lysates of transfected cells before purification were also analyzed (lower panel). Lanes 1 to 11, C152 to C152KR, as indicated for panel A. Lane 12; empty vector.To investigate how polyubiquitylation correlates with proteasome degradation of the core protein, we performed kinetic analysis of the wild-type and mutated core proteins by use of the Ub protein reference (UPR) technique, which can compensate for data scatter of sample-to-sample variations such as levels of expression (10, 24). Fusion proteins expressed from UPR-based constructs (Fig. (Fig.2A)2A) were cotranslationally cleaved by deubiquitylating enzymes, thereby generating equimolar quantities of the core proteins and the reference protein, dihydrofolate reductase-hemagglutinin (DHFR-HA) tag-modified Ub, in which the Lys at aa 48 was replaced by Arg to prevent its polyubiquitylation (UbR48). After 24 h of transfection with UPR constructs, cells were treated with cycloheximide and the amounts of core proteins and DHFR-HA-UbR48 at the indicated time points were determined by Western blot analysis using anticore and anti-HA antibodies. The mature form of the core protein, aa 1 to 173 (C173) (13, 20), and C152 were degraded with first-order kinetics (Fig. 2B and D). MG132 completely blocked the degradation of C173 and C152 (Fig. (Fig.2B),2B), and C152K6-23R and C152KR were markedly stabilized (Fig. (Fig.2C).2C). The half-lives of C173 and C152 were calculated to be 5 to 6 h, whereas those of C152K6-23R and C152KR were calculated to be 22 to 24 h (Fig. (Fig.2D),2D), confirming that the Ub plays an important role in regulating degradation of the core protein. Nevertheless, these results also suggest possible involvement of the Ub-independent pathway in the turnover of the core protein, as C152KR is more destabilized than the reference protein (Fig. (Fig.2C2C and and2D2D).Open in a separate windowFIG. 2.Kinetic analysis of degradation of HCV core proteins. (A) The fusion constructs used in the UPR technique. Open boxes indicate the DHFR sequence, which is extended at the C terminus by a sequence containing the HA epitope (hatched boxes). UbR48 moieties bearing the Lys-Arg substitution at aa 48 are represented by open ellipses. Bold lines indicate the regions of the core protein. The amino acid positions of the core protein are indicated above the bold lines. The arrows indicate the sites of in vivo cleavage by deubiquitylating enzymes. (B and C) Turnover of the core proteins. After a 24-h transfection with each UPR construct, cells were treated with 50 μg of cycloheximide/ml in the presence or absence of 10 μM MG132 for the different time periods indicated. Cells were lysed at the different time points indicated, followed by evaluation via sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis using antibodies against the core protein and HA. (D) Quantitation of the data shown in panels B and C. At each time point, the ratio of band intensity of the core protein relative to the reference DHFR-HA-UbR48 was determined by densitometry and is plotted as a percentage of the ratio at time zero.We have shown that PA28γ specifically binds to the core protein and is involved in its degradation (16, 17). Recent studies demonstrated that PA28γ is responsible for Ub-independent degradation of the steroid receptor coactivator SRC-3 and cell cycle inhibitors such as p21 (3, 11, 12). Thus, we next investigated the possibility of PA28γ involvement in the degradation of either C152KR or C152. Since C152KR carries two amino acid substitutions in the PA28γ-binding region (aa 44 to 71) (17), we tested the influence of the mutations of C152KR on the interaction with PA28γ by use of a coimmunoprecipitation assay. When Flag-tagged PA28γ (F-PA28γ) was expressed in cells along with C152 or C152KR, F-PA28γ precipitated along with both C152 and C152KR, indicating that PA28γ interacts with both core proteins (Fig. (Fig.3A).3A). Figure Figure3B3B reveals the effect of exogenous expression of F-PA28γ on the steady-state levels of C152 and C152KR. Consistent with previous data (17), the expression level of C152 was decreased to a nearly undetectable level in the presence of PA28γ (Fig. (Fig.3B,3B, lanes 1 and 3). Interestingly, exogenous expression of PA28γ led to a marked reduction in the amount of C152KR expressed (Fig. (Fig.3B,3B, lanes 5 and 7). Treatment with MG132 increased the steady-state level of the C152KR in the presence of F-PA28γ as well as the level of C152 (Fig. (Fig.3B,3B, lanes 4 and 8).Open in a separate windowFIG. 3.PA28γ-dependent degradation of the core protein. (A) Interaction of the core protein with PA28γ. Cells were cotransfected with the wild-type (C152) or Lys-less (C152KR) core expression plasmid in the presence of a Flag-PA28γ (F-PA28γ) expression plasmid or an empty vector. The transfected cells were treated with MG132. After 48 h, the cell lysates were immunoprecipitated with anti-Flag antibody and visualized by Western blotting with anticore antibodies. Western blot analysis of whole cell lysates was also performed. (B) Degradation of the wild-type and Lys-less core proteins via the PA28γ-dependent pathway. Cells were transfected with the UPR construct with or without F-PA28γ. In some cases, cells were treated with 10 μM MG132 for 14 h before harvesting. Western blot analysis was performed using anticore, anti-HA, and anti-Flag antibodies. (C) After 24 h of transfection with UPR-C152KR and UPR-C191KR with or without F-PA28γ (an empty vector), cells were treated with 50 μg of cycloheximide/ml for different time periods as indicated (chase time). Western blot analysis was performed using anticore and anti-HA antibodies. The precursor core protein and the core that was processed, presumably by signal peptide peptidase, are denoted by open and closed triangles, respectively.We further investigated whether PA28γ affects the turnover of Lys-less core protein through time course experiments. C152KR was rapidly destabilized and almost completely degraded in a 3-h chase experiment using cells overexpressing F-PA28γ (Fig. (Fig.3C,3C, left panels). A similar result was obtained using an analogous Lys-less mutant of the full-length core protein C191KR (Fig. (Fig.3C,3C, right panels), thus demonstrating that the Lys-less core protein undergoes proteasomal degradation in a PA28γ-dependent manner. These results suggest that PA28γ may play a role in accelerating the turnover of the HCV core protein that is independent of ubiquitylation.Finally, we examined gain- and loss-of-function of PA28γ with respect to degradation of full-length wild-type (C191) and mutated (C191KR) core proteins in human hepatoma Huh-7 cells. As expected, exogenous expression of PA28γ or E6AP caused a decrease in the C191 steady-state levels (Fig. (Fig.4A).4A). In contrast, the C191KR level was decreased with expression of PA28γ but not of E6AP. We further used RNA interference to inhibit expression of PA28γ or E6AP. An increase in the abundance of C191KR was observed with PA28γ small interfering RNA (siRNA) but not with E6AP siRNA (Fig. (Fig.4B).4B). An increase in the C191 level caused by the activity of siRNA against PA28γ or E6AP was confirmed as well.Open in a separate windowFIG. 4.Ub-dependent and Ub-independent degradation of the full-length core protein in hepatic cells. (A) Huh-7 cells were cotransfected with plasmids for the full-length core protein (C191) or its Lys-less mutant (C191KR) in the presence of F-PA28γ or HA-tagged-E6AP expression plasmid (HA-E6AP). After 48 h, cells were lysed and Western blot analysis was performed using anticore, anti-HA, anti-Flag, or anti-GAPDH. (B) Huh-7 cells were cotransfected with core expression plasmids along with siRNA against PA28γ or E6AP or with negative control siRNA. Cells were harvested 72 h after transfection and subjected to Western blot analysis.Taking these results together, we conclude that turnover of the core protein is regulated by both Ub-dependent and Ub-independent pathways and that PA28γ is possibly involved in Ub-independent proteasomal degradation of the core protein. PA28 is known to specifically bind and activate the 20S proteasome (19). Thus, PA28γ may function by facilitating the delivery of the core protein to the proteasome in a Ub-independent manner.Accumulating evidence suggests the existence of proteasome-dependent but Ub-independent pathways for protein degradation, and several important molecules, such as p53, p73, Rb, SRC-3, and the hepatitis B virus X protein, have two distinct degradation pathways that function in a Ub-dependent and Ub-independent manner (1, 2, 6, 7, 14, 21, 27). Recently, critical roles for PA28γ in the Ub-independent pathway have been demonstrated; SRC-3 and p21 can be recognized by the 20S proteasome independently of ubiquitylation through their interaction with PA28γ (3, 11, 12). It has also been reported that phosphorylation-dependent ubiquitylation mediated by GSK3 and SCF is important for SRC-3 turnover (26). Nevertheless, the precise mechanisms underlying turnover of most of the proteasome substrates that are regulated in both Ub-dependent and Ub-independent manners are not well understood. To our knowledge, the HCV core protein is the first viral protein studied that has led to identification of key cellular factors responsible for proteasomal degradation via dual distinct mechanisms. Although the question remains whether there is a physiological significance of the Ub-dependent and Ub-independent degradation of the core protein, it is reasonable to consider that tight control over cellular levels of the core protein, which is multifunctional and essential for viral replication, maturation, and pathogenesis, may play an important role in representing the potential for its functional activity.  相似文献   
166.
Edwardsiella tarda, which is known to be the causative agent of edwardsiellosis in freshwater and marine fish, has two motility phenotypes. Typical strains exhibiting motility are isolated mainly from freshwater fish and Japanese flounder. Atypical strains exhibiting non-motility are isolated mainly from marine fish, with the exception of Japanese flounder. Subtractive hybridization was performed to identify genomic differences between these two phenotypes. Two fragments which showed homology to potential virulence factors were isolated from atypical strains: the autotransporter adhesin AIDA and a component of T6SS. We analysed DNA sequences of about 5 kbp containing these fragments and identified two partial ORF, and ORF encoding for other components of T6SS. The predicted amino acid sequences showed remarkably low homology to components of T6SS reported in the typical E. tarda strain PPD130/91. Furthermore, the organization of these ORF was different from the gene cluster of the typical E. tarda strain. AIDA and T6SS may therefore be associated with different pathogenicity in typical and atypical E. tarda hosts.  相似文献   
167.
It is reported that some, but not all, bacteria in human faeces are coated with secretory immunoglobulin A (S-IgA). We evaluated the proportion of S-IgA-coated bacteria to total intestinal bacteria (S-IgA coating ratio) in the gastrointestinal tract of two different strains of mice supplied by two different suppliers. The S-IgA coating ratio was significantly different in each gastrointestinal segment and between mouse suppliers. The amount of non-bacteria-bound IgA (free IgA) in each gastrointestinal segment indicated that this difference in the S-IgA coating ratio might not be due to the amount of secreted IgA. Furthermore, immunoblotting analysis revealed that only a small amount of IgA (<5% to free-IgA) was used for the coating. This indicates that, although sufficient S-IgA was secreted to coat the entire intestinal population of bacteria, only some part of the bacteria were coated with S-IgA. This study suggests that the amount of luminal S-IgA may not determine the S-IgA coating ratio, and that the amount of IgA coating intestinal commensal bacteria is very small.  相似文献   
168.
Objective:  Mesenchymal stem cells (MSC) have both self-renewal and multilineage differentiation potential, and bone marrow-derived MSC have been applied for tissue regeneration and repair. Although adipose tissue-derived MSC (ASC) have emerged as an alternative cell source, little information is available regarding the biologic difference between ASC derived from visceral and subcutaneous fat. Therefore, we aimed to compare the proliferation and gene expression profile of cultured human visceral ASC (VASC) and subcutaneous ASC (SASC), and to identify a novel gene involved in proliferation and differentiation of ASC.
Materials and methods:  We performed microarray analysis of cultured VASC and SASC, and investigated the role of tazarotene-induced gene 1 (TIG1), a most differentially expressed gene, in the proliferation and differentiation of ASC.
Results:  SASC proliferated faster than VASC for over 10 passages, and TIG1 expression was consistently up-regulated in VASC of humans, rats and mice. Overexpression of the TIG1 gene in human SASC inhibited cell proliferation, whereas knockdown of TIG1 expression by siRNA promoted cell proliferation. In addition, overexpression of the TIG1 gene in SASC enhanced their differentiation into adipocytes, and promoted up-regulation of peroxisome proliferators-activated receptor γ and CCAAT/enhancer binding protein α. On the other hand, TIG1 overexpression in SASC inhibited their differentiation into osteocytes and the expression of osteocalcin.
Conclusion:  TIG1 plays an important role in regulating proliferation and differentiation of ASC.  相似文献   
169.
(E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter−1) rather than GGOH (0.2 mg liter−1) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter−1 GGOH and 6.5 mg liter−1 squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter−1 GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering.(E,E,E)-Geranylgeraniol (GGOH) can be used as an important ingredient for perfumes and as a desirable raw material for synthesizing vitamins A and E (4, 13). It is also known to induce apoptosis in various cancer and tumor cell lines (24, 36). GGOH is the dephosphorylated derivative of (E,E,E)-geranylgeranyl diphosphate (GGPP) (Fig. (Fig.1).1). GGPP is a significant intermediate of ubiquinone and carotenoid biosyntheses, especially in carotenoid-producing microorganisms and plant cells. It is also utilized as the lipid anchor of geranylgeranylated proteins. In the yeast Saccharomyces cerevisiae, GGPP is synthesized by GGPP synthase (GGPS), encoded by the BTS1 gene, which catalyzes the condensation of farnesyl diphosphate (FPP) and isopentenyl diphosphate (IPP) rather than the successive addition of IPP molecules to dimethylallyl diphosphate, geranyl diphosphate, and FPP that is detected in mammalian tissues (14). Biologically synthesized GGOH comprises only (E,E,E)-geometric isomers, and only the (E,E,E)-isomers have significant biological activities (23). The chemically synthesized form is usually obtained as mixtures of (E)- and (Z)-isomers and thus has lower potency. Therefore, there is a greater possibility of attaining efficient production of (E,E,E)-GGOH through fermentative production.Open in a separate windowFIG. 1.Biosynthetic pathway for GGOH in S. cerevisiae. The solid arrows indicate the one-step conversions in the biosynthesis, and the dashed arrows indicate the several steps. Intermediates: HMG-CoA, 3-hydroxy-3-methylflutaryl coenzyme A; DMAPP, dimethylallyl diphosphate. Enzymes: HMG-R, HMG-coenzyme A reductase (encoded by the HMG1 gene); FPS, FPP synthase (ERG20).Some yeast strains accumulate ergosterol up to 4.6% dry mass (1). Thus, yeasts have the potential to produce large amounts of GGOH if it is possible to enhance and redirect the metabolic flux to GGOH synthesis. The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-R), encoded by the HMG1 gene has been shown to be the major rate-limiting enzyme in the mevalonate pathway in S. cerevisiae (12). Overproduction of the catalytic domain of HMG-R in an S. cerevisiae strain resulted in squalene accumulation of up to 1% (27) and 2% (8) dry mass but did not cause any difference in the contents of isoprenoid alcohols such as farnesol (FOH) and geraniol (27). These results suggest that squalene is preferably accumulated rather than GGOH when the mevalonate pathway is enhanced by overexpression of the HMG1 gene. Squalene is synthesized through the condensation of two molecules of FPP catalyzed by squalene synthase (SQS) encoded by the ERG9 gene in S. cerevisiae (Fig. (Fig.1).1). The addition of an SQS inhibitor to cultures of S. cerevisiae strains resulted in the production of considerable amounts of FOH (∼77.5 mg liter−1) and relatively small amounts of GGOH (∼2.2 mg liter−1) (20). It has also been reported that SQS-deficient (Δerg9) S. cerevisiae strains, which are sterol auxotrophic, accumulated FPP in their cells (35) and excreted 1.3 mg liter−1 of FOH into the culture medium (5). Therefore, inactivation of SQS seems to enhance FOH rather than GGOH production. This is probably because of the low GGPS activity in S. cerevisiae. Indeed, a carotenoid-producing Rhodotorula yeast strain showed higher GGOH (24.4 mg liter−1) than FOH (4.4 mg liter−1) production on cultivation with an SQS inhibitor (20). Our group previously found that GGOH production could be enhanced by overexpression of the BTS1 gene in S. cerevisiae without SQS inhibition. In addition, coexpression of a fusion of the BTS1 and farnesyl diphosphate synthetase (ERG20) genes along with the HMG1 gene resulted in the production of a substantial amount of GGOH with only a small amount of FOH (C. Ohto, M. Muramatsu, E. Sakuradani, S. Shimizu, and S. Obata, submitted for publication).These results suggest that GGOH can be produced from GGPP through some endogenous phosphatase activities when GGPP synthesis is enhanced. We therefore hypothesized that enhancement of the phosphatase activity could increase the productivity of GGOH. However, it is not clear what kind of phosphatase enhances the GGOH production. It has been reported that the products of the diacylglycerol diphosphate phosphatase (DPP1) gene and lipid phosphate phosphatase (LPP1) gene account for most of the FPP and GGPP phosphatase activities in a particulate (membrane associated) fraction of S. cerevisiae (9). In this study, we found that GGOH production could be enhanced by overexpression of these phosphatase genes. We also demonstrated that overexpression of the BTS1-DPP1 and BTS1-ERG20 fusion genes along with the HMG1 gene further increased GGOH production. Finally, we constructed a high-level GGOH-producing yeast available for industrial processes involving multicopy integration vectors. The productivity of GGOH was evaluated in test tube cultures and 10-liter jar fermentors.  相似文献   
170.
Introduction of genetic material into cells is an essential prerequisite for current research in molecular cell biology. Although transfection with commercially available reagents results in excellent gene expression, their high costs are obstacles to experimentation with a large number or large scales of transfection. The cationic polymer linear-polyethylenimine (MW 25,000) (PEI), one of the most cost-effective vehicles, facilitates DNA compaction by polyplex formation, which leads to efficient delivery of DNA into cells by endocytosis. However, the use of PEI is still limited because of substantial cytotoxicity and intolerable deterioration in transfection efficiency by its low stability. Here, we show that acidification of PEI is important for its transfection activity. Dissolving PEI powder in 0.2N HCl confers a long shelf-life for PEI storage at 4 and −80 °C, and the polyplex formation of plasmid DNA with PEI is optimized in lactate-buffered saline at pH 4.0. Furthermore, changing the culture medium at 8–12 h posttransfection can minimize the cytotoxicity of PEI without sacrificing the high transfection efficiency comparable to that of commercial reagents. The cost per test using acidified PEI is drastically reduced to approximately 1:10,000, compared with commercial reagents. Thus, we conclude that acidification of PEI satisfactorily accomplishes cost-effective, high-efficiency transfection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号