首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   64篇
  国内免费   1篇
  561篇
  2022年   4篇
  2021年   5篇
  2020年   7篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2016年   7篇
  2015年   10篇
  2014年   13篇
  2013年   16篇
  2012年   32篇
  2011年   38篇
  2010年   20篇
  2009年   8篇
  2008年   31篇
  2007年   25篇
  2006年   26篇
  2005年   29篇
  2004年   21篇
  2003年   22篇
  2002年   36篇
  2001年   4篇
  2000年   9篇
  1999年   4篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   7篇
  1991年   4篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1986年   8篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   6篇
  1981年   9篇
  1978年   4篇
  1977年   7篇
  1976年   8篇
  1975年   5篇
  1974年   5篇
  1973年   7篇
  1971年   4篇
  1965年   4篇
排序方式: 共有561条查询结果,搜索用时 0 毫秒
1.
Statistical methods for computing the standard errors of the branching points of an evolutionary tree are developed. These methods are for the unweighted pair-group method-determined (UPGMA) trees reconstructed from molecular data such as amino acid sequences, nucleotide sequences, restriction-sites data, and electrophoretic distances. They were applied to data for the human, chimpanzee, gorilla, orangutan, and gibbon species. Among the four different sets of data used, DNA sequences for an 895-nucleotide segment of mitochondrial DNA (Brown et al. 1982) gave the most reliable tree, whereas electrophoretic data (Bruce and Ayala 1979) gave the least reliable one. The DNA sequence data suggested that the chimpanzee is the closest and that the gorilla is the next closest to the human species. The orangutan and gibbon are more distantly related to man than is the gorilla. This topology of the tree is in agreement with that for the tree obtained from chromosomal studies and DNA-hybridization experiments. However, the difference between the branching point for the human and the chimpanzee species and that for the gorilla species and the human-chimpanzee group is not statistically significant. In addition to this analysis, various factors that affect the accuracy of an estimated tree are discussed.   相似文献   
2.
Models of Evolution of Reproductive Isolation   总被引:12,自引:3,他引:9  
Masatoshi Nei  Takeo Maruyama    Chung-I Wu 《Genetics》1983,103(3):557-579
Mathematical models are presented for the evolution of postmating and premating reproductive isolation. In the case of postmating isolation it is assumed that hybrid sterility or inviability is caused by incompatibility of alleles at one or two loci, and evolution of reproductive isolation occurs by random fixation of different incompatibility alleles in different populations. Mutations are assumed to occur following either the stepwise mutation model or the infinite-allele model. Computer simulations by using It?'s stochastic differential equations have shown that in the model used the reproductive isolation mechanism evolves faster in small populations than in large populations when the mutation rate remains the same. In populations of a given size it evolves faster when the number of loci involved is large than when this is small. In general, however, evolution of isolation mechanisms is a very slow process, and it would take thousands to millions of generations if the mutation rate is of the order of 10(-5) per generation. Since gene substitution occurs as a stochastic process, the time required for the establishment of reproductive isolation has a large variance. Although the average time of evolution of isolation mechanisms is very long, substitution of incompatibility genes in a population occurs rather quickly once it starts. The intrapopulational fertility or viability is always very high. In the model of premating isolation it is assumed that mating preference or compatibility is determined by male- and female-limited characters, each of which is controlled by a single locus with multiple alleles, and mating occurs only when the male and female characters are compatible with each other. Computer simulations have shown that the dynamics of evolution of premating isolation mechanism is very similar to that of postmating isolation mechanism, and the mean and variance of the time required for establishment of premating isolation are very large. Theoretical predictions obtained from the present study about the speed of evolution of reproductive isolation are consistent with empirical data available from vertebrate organisms.  相似文献   
3.
Effect of Linkage on the Genetic Load Manifested under Inbreeding   总被引:1,自引:0,他引:1       下载免费PDF全文
Masatoshi Nei 《Genetics》1965,51(4):679-688
  相似文献   
4.
5.
A formula for the effective population size for the finite island model of subdivided populations is derived. The formula indicates that the effective size can be substantially greater than the actual number of individuals in the entire population when the migration rate among subpopulations is small. It is shown that the mean nucleotide diversity, coalescence time, and heterozygosity for genes sampled from the entire population can be predicted fairly well from the theory for randomly mating populations if the effective population size for the finite island model is used.  相似文献   
6.
7.
For a linked marker locus to be useful for genetic counseling, the counselee must be heterozygous for both disease and marker loci and his or her linkage phase must be known. It is shown that when the phenotypes of the counselee's previous children for the disease and marker loci are known, the linkage phase can often be inferred with a high probability, and thus it is possible to conduct genetic counseling. To evaluate the utility of linked marker genes for genetic counseling, the accuracy of prediction of the risk for a prospective child with a given marker gene to develop the genetic disease and the proportion of families in which a particular marker locus can be used for genetic counseling are studied for X-linked recessive, autosomal dominant, and autosomal recessive diseases. In the case of X-linked genetic diseases, information from children is very useful for determining the linkage phase of the counselee and predicting the genetic disease. In the case of autosomal dominant diseases, not all children are informative, but if the number of children is large, the phenotypes of children are often more informative than the information from grandparents. In the case of autosomal recessive diseases, information from grandparents is usually useless, since they show a normal phenotype for the disease locus. If we use information on the phenotypes of children, however, the linkage phase of the counselee and the risk of a prospective child can be inferred with a high probability. The proportion of informative families depends on the dominance relationship and frequencies of marker alleles, and the number of children. In general, codominant markers are more useful than are dominant markers, and a locus with high heterozygosity is more useful than is a locus with low heterozygosity.  相似文献   
8.
M. Nei  J. C. Miller 《Genetics》1990,125(4):873-879
A simple method is proposed for estimating the average number of nucleotide substitutions per site within and between populations for the case where a large number of individuals are examined for many restriction enzymes. This method gives essentially the same results as those obtained by Nei and Li's method but saves a large amount of computer time. The variances of the quantities estimated can be obtained by the jackknife method, and these variances are very similar to those obtained by Nei and Jin's more sophisticated method. A similar method can also be applied to DNA sequence data.  相似文献   
9.
Chakraborty R  Fuerst PA  Nei M 《Genetics》1978,88(2):367-390
With the aim of testing the validity of the mutation-drift hypothesis, we examined the pattern of genetic differentiation between populations by using data from Drosophila, fishes, reptiles, and mammals. The observed relationship between genetic identity and correlation of heterozygosities of different populations or species was generally in good agreement with the theoretical expectations from the mutation-drift theory, when the variation in mutation rate among loci was taken into account. In some species of Drosophila, however, the correlation was unduly high. The relationship between the mean and variance of genetic distance was also in good agreement with the theoretical prediction in almost all organisms. We noted that both the distribution of heterozygosity within species and the pattern of genetic differentiation between species can be explained by the same set of genetic parameters in each group of organisms. Alternative hypotheses for explaining these observations are discussed.  相似文献   
10.
本文应用空斑减少中和试验(PRNT)和细胞病变中和试验(cPENT)两种方法对出血热沙鼠肾细胞灭活疫苗扩大人体免疫后的血清进行中和抗体水平检测。根据两种方法对总计74人份的免疫后血清检测比较结果,两种方法检测的抗体阳转率和抗体水平(GMT)。CPENT法均高于PRNT法,经统计学处理均有显著性差异。不同免疫组的中和抗体水平比较结果,注射三针的阳转率(n=10,100%)高于两针组(n=10,20—30%);接种加氢氧化铝佐剂疫苗(n=13)较接种不加佐剂的两种疫苗(n=26)的抗体水平高,阳转率为92%—100%GMT为22—69;皮下途径(n=15)和肌肉途径(n=13)注射无明显差别,阳转率分别为87—93%和92—100%,GMT分别为29—46和22—61。以上结果进一步肯定沙鼠肾细胞疫苗的人体免疫性  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号