首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   989篇
  免费   74篇
  国内免费   1篇
  2022年   5篇
  2021年   10篇
  2020年   8篇
  2019年   10篇
  2018年   16篇
  2017年   15篇
  2016年   13篇
  2015年   27篇
  2014年   35篇
  2013年   40篇
  2012年   64篇
  2011年   68篇
  2010年   37篇
  2009年   17篇
  2008年   61篇
  2007年   46篇
  2006年   58篇
  2005年   50篇
  2004年   40篇
  2003年   50篇
  2002年   50篇
  2001年   20篇
  2000年   42篇
  1999年   25篇
  1998年   13篇
  1997年   22篇
  1996年   14篇
  1995年   9篇
  1994年   10篇
  1993年   2篇
  1992年   25篇
  1991年   18篇
  1990年   16篇
  1989年   20篇
  1988年   17篇
  1987年   14篇
  1986年   7篇
  1985年   6篇
  1984年   12篇
  1983年   13篇
  1982年   4篇
  1981年   4篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
  1968年   3篇
  1931年   1篇
排序方式: 共有1064条查询结果,搜索用时 15 毫秒
941.
A simple microchip device for DNA extraction was constructed based on electrostatic interactions between surface amine groups and DNA. Microchannel was fabricated on silicon wafer by photolithography and coated with 3-aminopropyltriethoxysilane (APTES) or 3-[2-(2-aminoethylamino)-ethylamino]-propyltrimethoxysilane (AEEA) to introduce amine groups on the surface. Determination of the number of surface amine groups and optimization of DNA capture condition were demonstrated to characterize the microchip. Capacities of capturing DNA were approximately 97 ng/cm2 in APTES and 194 ng/cm2 in AEEA modified microchips, respectively. The amount of DNA captured in the microchip increased depending on surface amine density. Furthermore, DNA extraction using amine-coated microchip from whole blood was examined. Quantification of DNA and proteins in washing or eluting fraction indicates that proteins were removed at washing steps and only DNA was effectively eluted by changing alkalinity of buffer from pH 7.5 to 10.6. The amount of DNA extracted from whole blood was approximately 10 ng and its recovery ratio was 27-40%. Performance of PCR for the eluted fraction indicates that DNA extracted from whole blood was well purified using amine-coated microchip.  相似文献   
942.
943.
Lipopolysaccharide (LPS) activates macrophages through toll-like receptor (TLR) 4. Although the mechanism of the TLR signaling pathway has been well documented, the mechanism of the negative regulation in response to LPS, particularly LPS tolerance, is still poorly understood. In this study we identified and characterized a novel interferon- and LPS-inducible gene, FLN29, which contains a TRAF6-related zinc finger motif and TRAF family member-associated NF-kappaB activator-related sequences. The induction of FLN29 was dependent on STAT1. The forced expression of FLN29 in macrophage-like RAW cells resulted in the suppression of TLR-mediated NF-kappaB and mitogen-activated protein kinase activation, while a reduced expression of FLN29 by small interfering RNA partly cancelled the down-regulation of LPS signaling. Furthermore, we demonstrated that NF-kappaB activation induced by TRAF6 and TAB2 was impaired by co-expression of FLN29, suggesting FLN29 may regulate the downstream of TRAF6. Taken together, FLN29 is a new negative feedback regulator of TLR signaling.  相似文献   
944.
Brassinosteroids are steroidal hormones essential for the growth and development of plants. Brassinolide, the most biologically active brassinosteroid, has a seven-membered lactone ring that is formed by a Baeyer-Villiger oxidation of its immediate precursor castasterone. Despite its potential key role in controlling plant development, brassinolide synthase has not been identified. Previous work has shown that the formation of castasterone from 6-deoxocastasterone is catalyzed by members of the CYP85A family of cytochrome P-450 monooxygenases. A null mutation in the tomato Dwarf (CYP85A1) gene, extreme dwarf (d(x)), causes severe dwarfism due to brassinosteroid deficiency, but the d(x) mutant still produces fruits. Here, we show that d(x) fruits contain brassinolide at a higher level than wild-type fruits and that a new CYP85A gene, CYP85A3, is preferentially expressed in tomato fruits. Tomato CYP85A3 catalyzed the Baeyer-Villiger oxidation to produce brassinolide from castasterone in yeast, in addition to the conversion of 6-deoxocastasterone to castasterone. We also show that Arabidopsis CYP85A2, which was initially characterized as castasterone synthase, also has brassinolide synthase activity. Exogenous application of castasterone and brassinolide to the Arabidopsis cyp85a1/cyp85a2 double mutant suggests that castasterone can function as an active brassinosteroid but that its conversion into brassinolide is necessary for normal vegetative development in Arabidopsis. We postulate that castasterone is the major active brassinosteroid during vegetative growth in tomato, whereas brassinolide may play an organ-specific role in fruit development in this species.  相似文献   
945.
946.
Glutaredoxin (GRX) is a small dithiol protein involved in various cellular functions, including the redox regulation of certain enzyme activities. GRX functions via a disulfide exchange reaction by utilizing the active site Cys-Pro-Tyr-Cys. Here we demonstrated that overexpression of GRX protected cells from hydrogen peroxide (H2O2)-induced apoptosis by regulating the redox state of Akt. Akt was transiently phosphorylated, dephosphorylated, and then degraded in cardiac H9c2 cells undergoing H2O2-induced apoptosis. Under stress, Akt underwent disulfide bond formation between Cys-297 and Cys-311 and dephosphorylation in accordance with an increased association with protein phosphatase 2A. Overexpression of GRX protected Akt from H2O2-induced oxidation and suppressed recruitment of protein phosphatase 2A to Akt, resulting in a sustained phosphorylation of Akt and inhibition of apoptosis. This effect was reversed by cadmium, an inhibitor of GRX. Furthermore an in vitro assay revealed that GRX reduced oxidized Akt in concert with glutathione, NADPH, and glutathione-disulfide reductase. Thus, GRX plays an important role in protecting cells from apoptosis by regulating the redox state of Akt.  相似文献   
947.
Serotonin N-acetyltransferase (EC. 2.3.1.87) (AA-NAT) is a melatonin rhythm-generating enzyme in pineal glands. To establish a melatonin rhythm, AA-NAT activity is precisely regulated through several signaling pathways. Here we show novel regulation of AA-NAT activity, in which an intramolecular disulfide bond may function as a switch for the catalysis. Recombinant AA-NAT activity was irreversibly inhibited by N-ethylmaleimide (NEM) in an acetyl-CoA-protected manner. Oxidized glutathione or dissolved oxygen reversibly inhibited AA-NAT in an acetyl-CoA-protected manner. To identify the cysteine residues responsible for the inhibition, AA-NAT was first oxidized with dissolved oxygen, treated with NEM, reduced with dithiothreitol, and then labeled with [(14)C]NEM. Cys(61) and Cys(177) were specifically labeled in an acetyl-CoA-protected manner. The AA-NAT with the Cys(61) to Ala and Cys(177) to Ala double substitutions (C61A/C177A-AA-NAT) was fully active but did not exhibit sensitivity to either oxidation or NEM, whereas the AA-NATs with only the single substitutions retained about 40% of these sensitivities. An intramolecular disulfide bond between Cys(61) and Cys(177) formed upon oxidation and cleaved upon reduction was identified. Furthermore, C61A/C177A-AA-NAT expressed in COS7 cells was relatively insensitive to H(2)O(2)-evoked oxidative stress, whereas wild-type AA-NAT was strongly inhibited under the same conditions. These results indicate that the formation and cleavage of the disulfide bond between Cys(61) and Cys(177) produce the active and inactive states of AA-NAT. It is possible that intracellular redox conditions regulate AA-NAT activity through switching via an intramolecular disulfide bridge.  相似文献   
948.
In mouse pancreatic insulin-producing betaTC cells, oxidative stress due to H(2)O(2) causes tyrosine phosphorylation in various proteins. To identify proteins bearing phosphotyrosine under stress, the proteins were affinity purified using an anti-phosphotyrosine antibody-conjugated agarose column. A protein of 180kDa was identified as clathrin heavy chain (CHC) by electrophoresis and mass spectrometry. Immunoprecipitated CHC showed tyrosine phosphorylation upon H(2)O(2) treatment and the phosphorylation was suppressed by the Src kinase inhibitor, PP2. The phosphorylation status of CHC affected the intracellular localization of CHC and the clathrin-dependent endocytosis of transferrin under oxidative stress. In conclusion, CHC is a protein that is phosphorylated at tyrosine by H(2)O(2) and this phosphorylation status is implicated in the intracellular localization and functions of CHC under oxidative stress. The present study demonstrates that oxidative stress affects intracellular vesicular trafficking via the alteration of clathrin-dependent vesicular trafficking.  相似文献   
949.
The biochemical properties of hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) truncated with C-terminal 21 amino acids and expressed in insect cells were analyzed. The enzyme carried copy-back and de novo RNA synthesis activity but not terminal nucleotidyl transferase activity. k(pol) and K(m) for de novo RNA synthesis were calculated as 10.0 pmol/microg/h and 2.5 microM under 0.5 mM GTP and 2.0 pmol/microg/h and 3.5 microM under 50 microM GTP, respectively. Those for copy-back RNA synthesis were similar under both conditions (k(pol), 1.8 pmol/microg/h; K(m), 3.0 microM). De novo RNA synthesis was activated by 0.5 mM GTP. However, the ratio of GTP to three other NTPs was important for activation. Our HCV RdRp showed high activity for the complementary sequence of the HCV internal ribosomal entry site and a synergistic effect of Mg(2+) to Mn(2+).  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号