首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   988篇
  免费   74篇
  国内免费   1篇
  2022年   5篇
  2021年   10篇
  2020年   8篇
  2019年   10篇
  2018年   16篇
  2017年   15篇
  2016年   13篇
  2015年   27篇
  2014年   35篇
  2013年   40篇
  2012年   64篇
  2011年   68篇
  2010年   37篇
  2009年   17篇
  2008年   61篇
  2007年   46篇
  2006年   58篇
  2005年   50篇
  2004年   40篇
  2003年   50篇
  2002年   50篇
  2001年   20篇
  2000年   42篇
  1999年   25篇
  1998年   13篇
  1997年   22篇
  1996年   14篇
  1995年   9篇
  1994年   10篇
  1993年   2篇
  1992年   25篇
  1991年   18篇
  1990年   16篇
  1989年   20篇
  1988年   17篇
  1987年   14篇
  1986年   7篇
  1985年   6篇
  1984年   12篇
  1983年   13篇
  1982年   4篇
  1981年   4篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
  1968年   3篇
  1931年   1篇
排序方式: 共有1063条查询结果,搜索用时 256 毫秒
11.
Tryptic peptides from hemoglobin (Hb) beta-chains were used as model substrates for limited proteolysis by prolyl endopeptidase (EC 3.4.21.26) from porcine muscle. From the physicochemical and enzymatic properties of prolyl endopeptidase the conditions for routine digestion were established as follows: the molar ratio of enzyme to substrate was 1 to 100, and the reaction was carried out in sodium phosphate buffer (pH 6.4) at 37 degrees C for 4 h. Under these conditions the peptide bonds on the carboxyl terminal sides of proline and alanine residues in the tryptic peptides from Hb beta-chains (with Mr values of less than 2100) were hydrolyzed by the enzyme with the exception of the amino terminal alanyl bond and aminoacyl alanyl bond. In addition, one of five seryl bonds was cleaved by the enzyme. However, the Hb beta-chain itself, Mr 16,600, and its two CNBr-peptides with Mr 10,200 and Mr 6400, respectively, were not hydrolyzed. Under the same conditions a prolyl bond in oxidized B-chains of insulin, Mr 3400, was partially digested, and an alanyl bond was not hydrolyzed. The data indicate that the prolyl endopeptidase is useful for the limited proteolysis of peptides with relative masses of less than 3000 at both prolyl and alanyl bonds.  相似文献   
12.
A vanadate- and N-ethylmaleimide-sensitive ATPase was purified about 500-fold from chromaffin granule membranes. The purified preparation contained a single major polypeptide with an apparent molecular mass of about 115 kDa, which was copurified with the ATPase activity. Immunological studies revealed that this polypeptide has no relation to subunit I (115 kDa) of the H+-ATPase from chromaffin granules. The ATPase activity of the enzyme is inhibited about 50% by 100 microM N-ethylmaleimide or 5 microM vanadate. The enzyme is not sensitive to dicyclohexylcarbodiimide, ouabain, SCH28080, and omeprazole, which distinguishes it from Na+/K+-ATPase and the gastric K+/H+-ATPase. ATP and 2-deoxy ATP are equally effective substrates for the enzyme. However, the enzyme exhibited only 10% activity with GTP as a substrate. UV illumination of the purified enzyme in the presence of [alpha-32P]ATP exclusively labeled the 115 kDa protein. This labeling was increased by Mg2+ and strongly inhibited by Ca2+ ions. Similarly, the ATPase activity was dependent on Mg2+ and inhibited by the presence of Ca2+ ions. The ATPase activity of the enzyme was largely insensitive to monovalent anions and cations, except for F-, which inhibited the vanadate-sensitive ATPase. Incubation of the enzyme in the presence of [14C]N-ethylmaleimide labeled the 115-kDa polypeptide, and this labeling could be prevented by the addition of ATP during the incubation. A reciprocal experiment showed that preincubation with N-ethylmaleimide inhibited the labeling of the 115-kDa polypeptide by [alpha-32P]ATP by UV illumination. This suggests a close proximity between the ATP-binding site and an essential sulfhydryl group. A possible connection between the isolated ATPase and organelle movement is discussed.  相似文献   
13.
Membrane ghosts were prepared from purified lysosomes (tritosomes) of rat liver by hypo-osmotic treatment. Mg2+-ATP-driven acidification was observed in the membrane ghosts using acridine orange as a fluorescent probe of the transmembrane pH gradient (delta pH). Its properties were the same as those of intact lysosomes reported previously (Ohkuma, S., Moriyama, Y., & Takano, T. (1982) Proc. Natl. Acad. Sci. U.S. 79, 2758-2762; Moriyama, Y., Takano, T., & Ohkuma, S. (1982) J. Biochem. 92, 1333-1336). The H+-pump was found to be electrogenic with use of bis(3-phenyl-5-oxoisoxasol-4-yl)pentamethine oxonol as a fluorescent membrane potential probe. Alkaline Mg2+-ATPase activity was also identified on the membranes. It showed a pH maximum of pH 8.0-8.5, a Km value for ATP of 0.36 mM and a Vmax of 0.41 units/mg protein at 30 degrees C. Its activity was inhibited by dicyclohexylcarbodiimide, tri-n-butyltin, azide and ADP, but not by ouabain or vanadate. It differed from mitochondrial F1F0-ATPase in sensitivities to N-ethylmaleimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, quercetin, and oligomycin. Since this alkaline Mg2+-ATPase activity is very similar to the H+-pump activity in its requirement for divalent cations, substrate specificity and sensitivities to various chemicals, it may act as a proton translocase (H+-pump). Possible mechanisms of action of some chemicals, such as 4-acetamide-4'-isothiocyanatostilbene-2,2'-disulfonic acid, that inhibited the H+-pump but not the alkaline Mg2+-ATPase, are discussed.  相似文献   
14.
15.
Satiated rats could be trained to give stable rates of responding for rewarding stimulation of the lateral hypothalamus delivered on differential reinforcement of low rate (DRL) schedule requiring 2 to 8 sec interresponse intervals for reinforcement (DRL-2 to 8). The performance on a DRL-8 schedule was tested 30 min after the oral administration of benzodiazepines. Diazepam (5 and 10 mg/kg) and meprobamate (200 mg/kg) caused significant increases in response rates during the first 5 min of a session, but not thereafter. Bromazepam (1 and 5 mg/kg) also caused a significant increase in the rates during the first and second 5 min. On the other hand, chlorpromazine (20 mg/kg) caused no effect in the first 5 min but decrease in second and third 5 min. These results indicate that DRL schedules with a brain stimulation reward provided a useful tool for evaluation of antianxiety drugs. The advantage of the brain stimulation reward over food reward is that the possible effects of the drugs on hunger motivation need not be considered.  相似文献   
16.
17.
Since Fasciola sp. contained proteolytic enzyme(s), it was confirmed that degradation took place in protein components in extracts of the liver flukes, which resulted in lack of clarity of sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Degradation was shown to occur mostly during a heating process of the extract samples. The proteolytic activity in the extracts was completely blocked and electrophoretic patterns were improved only by the use of cysteine proteinase inhibitor N-[N-(L-3-trans-carboxyoxiran-2-carbonyl)-L-leucyl]-agmatine (E-64). Great improvement was also noted in electrophoretic patterns of the extracts of other trematodes, such as Paragonimus westermani, P. miyazakii and Clonorchis sinesis, when their extracts were treated with E-64.  相似文献   
18.
Aminopeptidase M [EC 3.4.11.2] was purified 772-fold to homogeneity from the microsomal fraction of human liver, with a yield of 18.9%, by a combination of solubilization with 0.5% Triton X-100 and then 1 M urea and chromatography on columns of DEAE-cellulose, hydroxylapatite, Butyl-Toyopearl, and Sephacryl S-300. The purified enzyme had a molecular weight of 140,000 by SDS-polyacrylamide gel electrophoresis and of 280,000 by gel filtration on a column of TSK gel 2000 SW. It was reconstituted into proteoliposomes with asolectin, showing its amphiphilic nature. The aminopeptidase M from liver was found to be efficiently inhibited by bile acids. The enzyme was almost completely inhibited by chenodeoxycholic acid and 70-90% inhibited by cholic acid at a concentration of 6 mM. The extent of inhibition by conjugated and unconjugated bile acids was in the order: unconjugated greater than glycoconjugated greater than tauroconjugated bile acid, independent of the nature of the substrates used. The inhibition by the various bile acids was totally reversible. Further, it was immunochemically revealed that a considerable amount of liver aminopeptidase M was released into the bile duct. The role of the aminopeptidase M on the bile canalicular membrane and of the enzyme released in the bile duct is discussed in relation to the effects of bile acids.  相似文献   
19.
Renal medullary cells are normally exposed to high extracellular NaCl as part of the urinary concentrating mechanism. They react to this stress by accumulating sorbitol and other organic osmolytes. PAP-HT25, a line of epithelial cells derived from rabbit renal inner medulla, expresses this response. In hypertonic medium, these cells accumulate large amounts of sorbitol. There is a large increase in the amount of aldose reductase, which catalyzes production of sorbitol from glucose. The purpose of the present study was to investigate whether the aldose reductase protein increases because of faster synthesis or slower degradation. We measured the rate of synthesis and degradation of aldose reductase protein by pulse-chase with [35S]methionine, followed by immunoprecipitation with specific antiserum and autoradiography. The protein synthesis rate was 6 times greater in cells grown in hypertonic (500 mosmol/kg) medium, than in those grown in normal (300 mosmol/kg) medium. When control cells were switched to hypertonic medium, the synthesis rate increased 15-fold by 24 h, then decreased to 11-fold after 48 h. In contrast, synthesis rate continued to increase past 24 h when accumulation of sorbitol was prevented by inhibiting aldose reductase activity with Tolrestat. Thus, there is a feedback mechanism by which cellular sorbitol accumulation inhibits aldose reductase protein synthesis. Degradation of aldose reductase protein was slow (only about 25% in 3 days) and was not affected by osmolality. Thus, the osmoregulatory increase in aldose reductase protein is due to an increase in its synthesis rate and not to any change in its degradation.  相似文献   
20.
The roles of the Escherichia coli H(+)-ATPase (FoFl) delta subunit (177 amino acid residues) was studied by analyzing mutants. The membranes of nonsense (Gln-23----end, Gln-29----end, Gln-74----end) and missense (Gly-150----Asp) mutants had very low ATPase activities, indicating that the delta subunit is essential for the binding of the Fl portion to Fo. The Gln-176----end mutant had essentially the same membrane-bound activity as the wild type, whereas in the Val-174----end mutant most of the ATPase activity was in the cytoplasm. Thus Val-174 (and possibly Leu-175 also) was essential for maintaining the structure of the subunit, whereas the two carboxyl terminal residues Gln-176 and Ser-177 were dispensable. Substitutions were introduced at various residues (Thr-11, Glu-26, Asp-30, Glu-42, Glu-82, Arg-85, Asp-144, Arg-154, Asp-161, Ser-163), including apparently conserved hydrophilic ones. The resulting mutants had essentially the same phenotypes as the wild type, indicating that these residues do not have any significant functional role(s). Analysis of mutations (Gly-150----Asp, Pro, or Ala) indicated that Gly-150 itself was not essential, but that the mutations might affect the structure of the subunit. These results suggest that the overall structure of the delta subunit is necessary, but that individual residues may not have strict functional roles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号