首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   23篇
  国内免费   1篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   10篇
  2013年   19篇
  2012年   40篇
  2011年   40篇
  2010年   24篇
  2009年   13篇
  2008年   29篇
  2007年   27篇
  2006年   27篇
  2005年   29篇
  2004年   23篇
  2003年   25篇
  2002年   31篇
  2001年   4篇
  2000年   16篇
  1999年   9篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   6篇
  1991年   15篇
  1990年   2篇
  1989年   6篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有474条查询结果,搜索用时 171 毫秒
11.
ATP-dependent movement of actin filaments on smooth muscle myosin was investigated by using the in vitro motility assay method in which myosin was fixed on the surface of a coverslip in a phosphorylated or an unphosphorylated state. Actin filaments slid on gizzard myosin phosphorylated with myosin light chain kinase (MLCK) at a rate of 0.35 micron/s, but did not slide at all on unphosphorylated myosin. The movement of actin filaments on phosphorylated myosin was stopped by perfusion of phosphatase. Subsequent perfusion with a solution containing MLCK, calmodulin, and Ca2+ enabled actin filaments to move again. The sliding velocities on monophosphorylated and diphosphorylated myosin by MLCK were not different. Actin filaments did not move on myosin phosphorylated with protein kinase C (PKC). The sliding velocity on myosin phosphorylated with both MLCK and PKC was identical to that on myosin phosphorylated only with MLCK. Gizzard tropomyosin enhanced the sliding velocity to 0.76 micron/s. Gizzard caldesmon decreased the sliding velocity with increase in its concentration. At a 5-fold molar ratio of caldesmon to actin, the movement stopped completely. This inhibitory effect of caldesmon was relieved upon addition of excess calmodulin and Ca2+.  相似文献   
12.
Contraction of rat uterine smooth muscle related to phosphorylation state of myosin light chain under various conditions was investigated. In the Ca2(+)-containing medium, both high K+ and oxytocin induced marked contraction of the muscle accompanied by pronounced phosphorylation of myosin light chain. In the Ca2(+)-free medium, although both vanadate and oxytocin induced slight contraction, phosphorylation of myosin light chain was only evident for vanadate but not for oxytocin. It was suggested that another mechanism distinct from myosin light chain phosphorylation might be involved in Ca2(+)-independent contraction of uterine smooth muscle elicited by oxytocin.  相似文献   
13.
We have presented here a case of atypical insulinoma. Despite the recurrent episodes of hypoglycemic symptoms, the plasma level of insulin has never been excessive at fasting or by regular provocative tests. Detailed examination had demonstrated qualitative abnormality of insulin secretion. Hyposuppressibility of insulin secretion by hypoglycemia, borderline diabetic curve of glucose tolerance test, blunted response ot insulin to glucagon and leucine were the principle characteristics of these abnormalities. After removal of adenoma, insulin response to glucose, glucagon and leucine was improved. Only secretion provoked a high level of insulin and this abnormal elevation was no longer seen after the removal of adenoma. A removed elevation was no longer seen after the removal of adenoma. A removed insulinoma contained 25 U of immunoreactive insulin per gram tissue, but was negative for aldehyde-fuchsin staining. On electromicroscopy only atypical beta-cell granules were seen.  相似文献   
14.
In nonapoptotic cells, the phosphorylation level of myosin II is constantly maintained by myosin kinases and myosin phosphatase. During apoptosis, caspase-3–activated Rho-associated protein kinase I triggers hyperphosphorylation of myosin II, leading to membrane blebbing. Although inhibition of myosin phosphatase could also contribute to myosin II phosphorylation, little is known about the regulation of myosin phosphatase in apoptosis. In this study, we have demonstrated that, in apoptotic cells, the myosin-binding domain of myosin phosphatase targeting subunit 1 (MYPT1) is cleaved by caspase-3 at Asp-884, and the cleaved MYPT1 is strongly phosphorylated at Thr-696 and Thr-853, phosphorylation of which is known to inhibit myosin II binding. Expression of the caspase-3 cleaved form of MYPT1 that lacked the C-terminal end in HeLa cells caused the dissociation of MYPT1 from actin stress fibers. The dephosphorylation activity of myosin phosphatase immunoprecipitated from the apoptotic cells was lower than that from the nonapoptotic control cells. These results suggest that down-regulation of MYPT1 may play a role in promoting hyperphosphorylation of myosin II by inhibiting the dephosphorylation of myosin II during apoptosis.  相似文献   
15.
16.
Strigolactones (SLs) are essential host recognition signals for both root parasitic plants and arbuscular mycorrhizal fungi, and SLs or their metabolites function as a novel class of plant hormones regulating shoot and root architecture. Our previous study indicated that nitrogen (N) deficiency as well as phosphorus (P) deficiency in sorghum enhanced root content and exudation of 5-deoxystrigol, one of the major SLs produced by sorghum. In the present study, we examined how N and P fertilization affects SL production and exudation in sorghum plants subjected to short- (5 days) or long-term (10 days) N or P deficiency and demonstrated their common and distinct features. The root contents and exudation of SLs in the N- or P-deficient sorghum plants grown for 6, 12 or 24 h with or without N or P fertilization were quantified by LC–MS/MS. In general, without fertilization, root contents and exudation of SLs stayed at similar levels at 6 and 12 h and then significantly increased at 24 h. The production of SLs responded more quickly to P fertilization than the secretion of SLs, while regulation of SL secretion began earlier after N fertilization. It is suggested that sorghum plants regulate SL production and exudation when they are subjected to nutrient deficiencies depending on the type of nutrient and degree of deficiency.  相似文献   
17.
Cardiomyocytes proliferate during fetal life but lose their ability to proliferate soon after birth and further increases in cardiac mass are achieved through an increase in cell size or hypertrophy. Mammalian target of rapamycin complex 1 (mTORC1) is critical for cell growth and proliferation. Rheb (Ras homologue enriched in brain) is one of the most important upstream regulators of mTORC1. Here, we attempted to clarify the role of Rheb in the heart using cardiac-specific Rheb-deficient mice (Rheb−/−). Rheb−/− mice died from postnatal day 8 to 10. The heart-to-body weight ratio, an index of cardiomyocyte hypertrophy, in Rheb−/− was lower than that in the control (Rheb+/+) at postnatal day 8. The cell surface area of cardiomyocytes isolated from the mouse hearts increased from postnatal days 5 to 8 in Rheb+/+ mice but not in Rheb−/− mice. Ultrastructural analysis indicated that sarcomere maturation was impaired in Rheb−/− hearts during the neonatal period. Rheb−/− hearts exhibited no difference in the phosphorylation level of S6 or 4E-BP1, downstream of mTORC1 at postnatal day 3 but showed attenuation at postnatal day 5 or 8 compared with the control. Polysome analysis revealed that the mRNA translation activity decreased in Rheb−/− hearts at postnatal day 8. Furthermore, ablation of eukaryotic initiation factor 4E-binding protein 1 in Rheb−/− mice improved mRNA translation, cardiac hypertrophic growth, sarcomere maturation, and survival. Thus, Rheb-dependent mTORC1 activation becomes essential for cardiomyocyte hypertrophic growth after early postnatal period.  相似文献   
18.
Adipose tissue‐derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β‐cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow‐derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs.  相似文献   
19.
20.
Intact osteoactivin, a novel type I membrane glycoprotein, were shed at a dibasic motif in the juxtamembrane region in C2C12 myoblasts. Extracellular fragments were secreted into the culture media by a putative metalloprotease. Extracellular fragments of osteoactivin, but not control protein, induced matrix metalloprotease-3 (MMP-3) expression in NIH-3T3 fibroblasts. Epidermal growth factor (ERK) kinase inhibitors inhibited the osteoactivin-mediated MMP-3 expression, whereas the extracellular fragment of osteoactivin activated ERK1/2 and p38 in the mitogen-activated protein kinase pathway. Our results suggest that the extracellular fragments of osteoactivin produced by shedding act as a growth factor to induce MMP-3 expression via the ERK pathway in fibroblasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号