首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1105篇
  免费   101篇
  1206篇
  2022年   11篇
  2021年   17篇
  2020年   8篇
  2019年   7篇
  2018年   11篇
  2017年   12篇
  2016年   12篇
  2015年   44篇
  2014年   40篇
  2013年   69篇
  2012年   65篇
  2011年   58篇
  2010年   47篇
  2009年   32篇
  2008年   64篇
  2007年   74篇
  2006年   72篇
  2005年   43篇
  2004年   63篇
  2003年   47篇
  2002年   52篇
  2001年   20篇
  2000年   24篇
  1999年   16篇
  1998年   13篇
  1997年   15篇
  1996年   12篇
  1995年   7篇
  1994年   16篇
  1993年   15篇
  1992年   17篇
  1991年   18篇
  1990年   20篇
  1989年   17篇
  1988年   10篇
  1987年   15篇
  1986年   9篇
  1985年   11篇
  1984年   8篇
  1983年   10篇
  1982年   6篇
  1981年   8篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1976年   4篇
  1974年   5篇
  1971年   6篇
  1967年   4篇
  1966年   4篇
排序方式: 共有1206条查询结果,搜索用时 22 毫秒
71.
Autophagy is an intracellular degradation process by which cytoplasmic contents are degraded in the lysosome. In addition to nonselective engulfment of cytoplasmic materials, the autophagosomal membrane can selectively recognize specific proteins and organelles. It is generally believed that the major selective substrate (or cargo receptor) p62 is recruited to the autophagosomal membrane through interaction with LC3. In this study, we analyzed loading of p62 and its related protein NBR1 and found that they localize to the endoplasmic reticulum (ER)-associated autophagosome formation site independently of LC3 localization to membranes. p62 colocalizes with upstream autophagy factors such as ULK1 and VMP1 even when autophagosome formation is blocked by wortmannin or FIP200 knockout. Self-oligomerization of p62 is essential for its localization to the autophagosome formation site. These results suggest that p62 localizes to the autophagosome formation site on the ER, where autophagosomes are nucleated. This process is similar to the yeast cytoplasm to vacuole targeting pathway.  相似文献   
72.
Portal hypertension, a major complication of cirrhosis, is caused by both increased portal blood flow due to arterial vasodilation and augmented intrahepatic vascular resistance due to sinusoidal constriction. In this study, we examined the possible involvement of resident macrophages in the tone regulation of splanchnic blood vessels using bile duct ligated (BDL) portal hypertensive rats and an in vitro organ culture method. In BDL cirrhosis, the number of ED2-positive resident macrophages increased by two- to fourfold in the vascular walls of the mesenteric artery and extrahepatic portal vein compared with those in sham-operated rats. Many ED1-positive monocytes were also recruited into this area. The expression of inducible nitric oxide (NO) synthase (iNOS) mRNA was increased in the vascular tissues isolated from BDL rats, and accordingly, nitrate/nitrite production was increased. Immunohistochemistry revealed that iNOS was largely expressed in ED1-positive and ED2-positive cells. We further analyzed the effect of iNOS expression on vascular smooth muscle contraction using an in vitro organ culture system. iNOS mRNA expression and nitrate production significantly increased in vascular tissues (without endothelium) incubated with 1 μg/ml lipopolysaccharide (LPS) for 6 h. Immunohistochemistry indicated that iNOS was largely expressed in ED2-positive resident macrophages. α-Adrenergic-stimulated contractility of the mesenteric artery was greatly suppressed by LPS treatment and was restored by N(G)-nitro-L-arginine methyl ester (NO synthase inhibitor); in contrast, portal vein contractility was largely unaffected by LPS. Sodium nitroprusside (NO donor) and 8-bromo-cGMP showed greater contractile inhibition in the mesenteric artery than in the portal vein with decreasing myosin light chain phosphorylation. In the presence of an α-adrenergic agonist, the mesenteric artery cytosolic Ca(2+) level was greatly reduced by sodium nitroprusside; however, the portal vein Ca(2+) level was largely unaffected. These results suggest that the induction of iNOS in monocytes/macrophages contributes to a hypercirculatory state in the cirrhosis model rat in which the imbalance of the responsiveness of visceral vascular walls to NO (mesenteric artery > portal vein) may account for the increased portal venous flow in portal hypertension.  相似文献   
73.
74.
We previously identified a thrombin-inhibiting DNA aptamer that was presumed to form a G-quartet structure with a duplex. To investigate the importance of the sequences in the duplex region and to obtain aptamers with higher inhibitory activities, we randomized the sequences of the duplex region of this aptamer and carried out selection based on inhibitory activity using a genetic algorithm. This method consisted of selection via an inhibition assay, crossover, and mutation in silico. After two cycles, we obtained ligands with greater inhibitory activities than that of the original aptamer. In addition, the duplex sequences were found to contribute to the inhibitory activities of aptamers.  相似文献   
75.
Intra-sexual dimorphism is found in the weapons of many male beetles. Different behavioral tactics to access females between major and minor males, which adopt fighting and alternative tactics, respectively, are thought to maintain the male dimorphism. In these species major males have enlarged weapons that they use in fights with rival males. Minor males also have small weapons in some of these species, and it is unclear why these males possess weapons. We examined the hypothesis that minor males might adopt a fighting tactic when their status was relatively high in comparison with that of other males (e.g., ownership of a territory). We observed the behavioral tactics of major and minor males of the beetle Librodor japonicus, whose males have a dimorphism of their mandibles. Major males fought for resources, whereas minor males adopted two status-dependent tactics, fighting and sneaking, to access females, depending on their ownership of a sap site. We suggest that ownership status-dependent mating tactics in minor males may maintain the intra-sexual dimorphism in this beetle.  相似文献   
76.
Epidemiological studies suggest that insulin resistance is an independent risk factor for cardiovascular disease. However, there is little information on the role of insulin resistance in atherosclerogenesis independent of LDL cholesterol level. The aim of this study was to investigate the impact of systemic insulin resistance on monocyte adhesion to endothelial cells and atherosclerotic lesions independent of LDL cholesterol level. KKAy mice are obese mice with spontaneous diabetes and insulin resistance, and normal levels of LDL cholesterol. In parallel with systemic insulin resistance, decreased insulin signal, and the increased expression of monocyte chemoattractant protein-1 (MCP-1) were noted in macrophages isolated from KKAy mice. These mice showed enhanced monocyte adhesion to the endothelial cells of the thoracic artery. Furthermore, these mice showed expanded atherosclerotic lesions when fed high cholesterol diet. Our data indicate that insulin resistance promotes the atherosclerogenesis independent of LDL cholesterol level. Decreased insulin signaling in macrophages associated with systemic insulin resistance could be involved, at least in part, in this pathological process.  相似文献   
77.
Amyloid-beta precursor protein (APP) was identified on expression cloning from a human placenta cDNA library as a gene product that modulates the activity of membrane-type matrix metalloproteinase-1 (MT1-MMP). Co-expression of MT1-MMP with APP in HEK293T cells induced cleavage and shedding of the APP ectodomain when co-expressed with APP adaptor protein Fe65. Among the MT-MMPs tested, MT3-MMP and MT5-MMP also caused efficient APP shedding. The recombinant APP protein was cleaved by MT3-MMP in vitro at the A463-M464, N579-M580, H622-S623, and H685-Q686 peptide bonds, which included a cleavage site within the amyloid beta peptide region known to produce a C-terminal fragment. The Swedish-type mutant of APP, which produces a high level of amyloid beta peptide, was more effectively cleaved by MT3-MMP than wild-type APP in both the presence and absence of Fe65; however, amyloid beta peptide production was not affected by MT3-MMP expression. Expression of MT3-MMP enhanced Fe65-dependent transactivation by APP fused to the Gal4 DNA-binding and transactivation domains. These results suggest that MT1-MMP, MT3-MMP and MT5-MMP should play an important role in the regulation of APP functions in tissues including the central nervous system.  相似文献   
78.
Hosokawa N  Hara Y  Mizushima N 《FEBS letters》2006,580(11):2623-2629
Autophagy is an intracellular bulk degradation system. We established mouse fibroblast lines coupling the Tet-off system with an Atg5(-/-) mouse embryonic fibroblast line to artificially regulate autophagic ability. In the presence of doxycycline (Dox), Atg5 expression was completely suppressed and these cells were autophagy-defective. After removal of Dox, autophagic ability was restored within 6h. Very low levels of Atg5 could induce an autophagy competent state. We applied this novel system to examine the contribution of autophagy to controlling cell size. Cell size reduction in response to starvation was significantly inhibited in cells unable to undergo autophagy. The generated cell lines will be useful reagents for future mechanistic studies into the regulation and physiologic significance of autophagy.  相似文献   
79.
Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation.Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown.Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGFβ enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells.Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGFβ might be an important pathway of gastric cancer cell proliferation by TGFβ.  相似文献   
80.
The translocation into Escherichia coli cytoplasmic membrane vesicles of a protein containing an uncleavable signal peptide was studied. The signal peptide cleavage site of the ompF-lpp chimeric protein, a model secretory protein, was changed from Ala-Ala to Phe-Pro through oligonucleotide-directed site-specific mutagenesis of the ompF-lpp gene on a plasmid. The mutant protein was no longer processed by the signal peptidase. When proteinase K treatment was adopted as a probe for protein translocation into inverted membrane vesicles, the mutant protein exhibited rapid and almost complete translocation, most likely due to the lack of premature cleavage of the signal peptide before the translocation. This result also indicates that cleavage of the signal peptide is not required for translocation of the mature domain of the protein. The establishment of an efficient system made it possible to perform precise and quantitative analysis of the translocation process. The translocation was time-dependent, vesicle-dependent, and required ATP and NADH. Translocation into membrane vesicles was also observed with the uncleavable precursor protein purified by means of immunoaffinity chromatography, although the efficiency was appreciably low. The translocation required only ATP and NADH. Addition of the cytosolic fraction did not enhance the translocation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号