首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2905篇
  免费   151篇
  国内免费   2篇
  2023年   10篇
  2022年   20篇
  2021年   55篇
  2020年   28篇
  2019年   43篇
  2018年   67篇
  2017年   61篇
  2016年   83篇
  2015年   121篇
  2014年   151篇
  2013年   197篇
  2012年   205篇
  2011年   236篇
  2010年   135篇
  2009年   122篇
  2008年   190篇
  2007年   174篇
  2006年   172篇
  2005年   166篇
  2004年   176篇
  2003年   175篇
  2002年   148篇
  2001年   17篇
  2000年   20篇
  1999年   22篇
  1998年   29篇
  1997年   24篇
  1996年   21篇
  1995年   25篇
  1994年   11篇
  1993年   22篇
  1992年   14篇
  1991年   13篇
  1990年   11篇
  1989年   9篇
  1988年   9篇
  1987年   9篇
  1986年   11篇
  1985年   6篇
  1984年   7篇
  1983年   11篇
  1982年   9篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1969年   2篇
  1965年   1篇
排序方式: 共有3058条查询结果,搜索用时 15 毫秒
991.
Concanavalin A (ConA), a Ca2+/Mn2+-dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-κB-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor. These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.  相似文献   
992.
Three inositol 1,4,5-trisphosphate receptor (IP3R) subtypes are differentially expressed among tissues and function as the Ca2+ release channel on specialized endoplasmic reticulum (ER) membranes. The proper subcellular localization of IP3R is crucial for its proper function, but this molecular mechanism is unclear. KRAS-induced actin-interacting protein (KRAP) was originally identified as a cancer-related molecule, and is involved in the regulation of whole-body energy homeostasis and pancreatic exocrine system. We herein identified IP3R as an associated molecule with KRAP in vivo, and the association was validated by the co-immunoprecipitation and confocal immunostaining studies in mouse tissues including liver and pancreas. The association of KRAP with IP3R was also observed in the human epithelial cell lines including HCT116, HeLa and HEK293 cells. Intriguingly, KRAP interacts with distinct subtypes of IP3R in a tissue-dependent manner, i.e. IP3R1 and IP3R2 in the liver and IP3R2 and IP3R3 in the pancreas. The NH2-terminal amino acid residues 1–610 of IP3R are critical for the association with KRAP and KRAP–IP3R complex resides in a specialized ER but not a typical reticular ER. Furthermore, the localization of particular IP3R subtypes in tissues from KRAP-deficient mice is obviously disturbed, i.e. IP3R1 and IP3R2 in the liver and IP3R2 and IP3R3 in the pancreas. These findings demonstrate that KRAP physically associates with IP3R and regulates the proper localization of IP3R in the epithelial cells in vivo and cultured cells, and might shed light on the Ca2+ signaling underlying physiological cellular programs, cancer development and metabolism-related diseases.  相似文献   
993.
994.
In Europe, carbon dioxide therapy has been used for cardiac disease and skin problems for a long time. However there have been few reports investigating the effects of carbon dioxide therapy on skeletal muscle. Peroxisome proliferators-activated receptor (PPAR)-gamma coactivator-1 (PGC-1α) is up-regulated as a result of exercise and mediates known responses to exercise, such as mitochondrial biogenesis and muscle fiber-type switching, and neovascularization via up-regulation of vascular endothelial growth factor (VEGF). It is also known that silent mating type information regulation 2 homologs 1 (SIRT1) enhances PGC-1α-mediated muscle fiber-type switching. Previously, we demonstrated transcutaneous application of CO2 increased blood flow and a partial increase of O2 pressure in the local tissue known as the Bohr effect. In this study, we transcutaneously applied CO2 to the lower limbs of rats, and investigated the effect on the fast muscle, tibialis anterior (TA) muscle. The transcutaneous CO2 application caused: (1) the gene expression of PGC-1α, silent mating type information regulation 2 homologs 1 (SIRT1) and VEGF, and increased the number of mitochondria, as proven by real-time PCR and immunohistochemistry, (2) muscle fiber switching in the TA muscle, as proven by isolation of myosin heavy chain and ATPase staining. Our results suggest the transcutaneous application of CO2 may have therapeutic potential for muscular strength recovery resulting from disuse atrophy in post-operative patients and the elderly population.  相似文献   
995.
After partial hepatectomy (PH), regenerating liver accumulates unknown lipid species. Here, we analyzed lipids in murine liver and adipose tissues following PH by thin-layer chromatography (TLC), imaging mass spectrometry (IMS), and real-time RT-PCR. In liver, IMS revealed that a single TLC band comprised major 19 TG species. Similarly, IMS showed a single phospholipid TLC band to be major 13 species. In adipose tissues, PH induced changes to expression of genes regulating lipid metabolism. Finally, IMS of phosphatidylcholine species demonstrated distribution gradients in lobules that resembled hepatic zonation. IMS is thus a novel and power tool for analyzing lipid species with high resolution.  相似文献   
996.
Among metazoan species, left-right reversals in primary asymmetry have rarely gone to fixation. This suggests that a general mechanism suppresses the evolution of polarity reversal. Most metazoans appear externally symmetric and reproduce by external fertilization or copulation with genitalia located in the midline. Thus, reversal should generate little exogenous disadvantage when interacting with the external environment or in mating with the common wild-type. Accordingly, an endogenously caused fitness reduction may be responsible for the general absence of reversed species. However, how this selection operates is little understood. Phenotypic changes associated with reversal are usually inseparable from zygotic pleiotropy. By exploiting hermaphroditism and the maternal inheritance of left-right polarity, we generated dextral and sinistral snails that share the same zygotic genotype. Before hatching, these sinistrals developed lethal morphological anomalies more frequently than dextrals. Their shell shape at maturity differed from the mirror image of the dextral shell. These interchiral differences demonstrate pleiotropy in maternal effects of the polarity or linked genes. Variation in interchiral differences between parental crosses suggests the presence of epistatic variation in relative performance of sinistrals. Our results show that internal selection operates against polarity reversal, and we suggest that this is due to changes in blastomere configuration.  相似文献   
997.
Seafloor massive sulfide (SMS) deposits are the target of available metallic resources. The toxic impacts of leachable metals from hydrothermal ore by mining operations in marine environments are a concern. However, ecotoxicological knowledge about marine algae, and particularly open ocean species, is still limited. Here, we evaluated the toxic effects of three leachable metals (i.e. Zn, Cu, and Pb) on seven marine algae, including cyanobacteria and eukaryotes, by a delayed fluorescence method. Cyanobacterial Synechococcus and Cyanobium species were sensitive to Zn and Cu, while eukaryotic algae showed various responses to heavy metal species. The prasinophycean Bathycoccus prasinos NIES‐2670 was sensitive to all metal species; this strain is a potential test strain to detect the leachable metals. A co‐culture experiment showed that the impact on community structure varies depending on leachable metal species. This study demonstrates that surveys across multiple taxonomic groups are necessary to assess the impact of SMS‐mining operations on marine ecosystems as a whole.  相似文献   
998.
Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol‐based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid‐ordered (Lo)‐phase domains in giant unilamellar vesicles, Lo‐phase‐like domains formed at lower temperatures in giant PM vesicles, and detergent‐resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid‐like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non‐raft domains, as defined here, in the PM.  相似文献   
999.

Background

The development and validation of stem cell therapies using induced pluripotent stem (iPS) cells can be optimized through translational research using pigs as large animal models, because pigs have the closest characteristics to humans among non-primate animals. As the recent investigations have been heading for establishment of the human iPS cells with naïve type characteristics, it is an indispensable challenge to develop naïve type porcine iPS cells. The pluripotency of the porcine iPS cells can be evaluated using their abilities to form chimeras. Here, we describe a simple aggregation method using parthenogenetic host embryos that offers a reliable and effective means of determining the chimera formation ability of pluripotent porcine cells.

Methodology/Significant Principal Findings

In this study, we show that a high yield of chimeric blastocysts can be achieved by aggregating the inner cell mass (ICM) from porcine blastocysts with parthenogenetic porcine embryos. ICMs cultured with morulae or 4–8 cell-stage parthenogenetic embryos derived from in vitro-matured (IVM) oocytes can aggregate to form chimeric blastocysts that can develop into chimeric fetuses after transfer. The rate of production of chimeric blastocysts after aggregation with host morulae (20/24, 83.3%) was similar to that after the injection of ICMs into morulae (24/29, 82.8%). We also found that 4–8 cell-stage embryos could be used; chimeric blastocysts were produced with a similar efficiency (17/26, 65.4%). After transfer into recipients, these blastocysts yielded chimeric fetuses at frequencies of 36.0% and 13.6%, respectively.

Conclusion/Significance

Our findings indicate that the aggregation method using parthenogenetic morulae or 4–8 cell-stage embryos offers a highly reproducible approach for producing chimeric fetuses from porcine pluripotent cells. This method provides a practical and highly accurate system for evaluating pluripotency of undifferentiated cells, such as iPS cells, based on their ability to form chimeras.  相似文献   
1000.
Macrophage infiltration into adipose tissue is associated with obesity and the crosstalk between adipocytes and infiltrated macrophages has been investigated as an important pathological phenomenon during adipose tissue inflammation. Here, we sought to identify adipocyte mRNAs that are regulated by interaction with infiltrated macrophages in vivo. An anti-inflammatory vitamin, vitamin B6, suppressed macrophage infiltration into white adipose tissue and altered mRNA expression. We identified >3500 genes whose expression is significantly altered during the development of obesity in db/db mice, and compared them to the adipose tissue mRNA expression profile of mice supplemented with vitamin B6. We identified PTX3 and MMP3 as candidate genes regulated by macrophage infiltration. PTX3 and MMP3 mRNA expression in 3T3-L1 adipocytes was up-regulated by activated RAW264.7 cells and these mRNA levels were positively correlated with macrophage number in adipose tissue in vivo. Next, we screened adipose genes down-regulated by the interaction with macrophages, and isolated RASSF6 (Ras association domain family 6). RASSF6 mRNA in adipocytes was decreased by culture medium conditioned by activated RAW264.7 cells, and RASSF6 mRNA level was negatively correlated with macrophage number in adipose tissue, suggesting that adipocyte RASSF6 mRNA expression is down-regulated by infiltrated macrophages in vivo. Finally, this study also showed that decreased RASSF6 expression up-regulates mRNA expression of several genes, such as CD44 and high mobility group protein HMGA2. These data provide novel insights into the biological significance of interactions between adipocytes and macrophages in adipose tissue during the development of obesity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号