首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4030篇
  免费   233篇
  国内免费   2篇
  4265篇
  2023年   14篇
  2022年   26篇
  2021年   66篇
  2020年   34篇
  2019年   51篇
  2018年   79篇
  2017年   68篇
  2016年   102篇
  2015年   141篇
  2014年   187篇
  2013年   251篇
  2012年   277篇
  2011年   293篇
  2010年   166篇
  2009年   153篇
  2008年   247篇
  2007年   248篇
  2006年   216篇
  2005年   239篇
  2004年   212篇
  2003年   223篇
  2002年   191篇
  2001年   45篇
  2000年   58篇
  1999年   61篇
  1998年   49篇
  1997年   38篇
  1996年   36篇
  1995年   29篇
  1994年   24篇
  1993年   36篇
  1992年   34篇
  1991年   37篇
  1990年   30篇
  1989年   34篇
  1988年   30篇
  1987年   17篇
  1986年   26篇
  1985年   21篇
  1984年   32篇
  1983年   18篇
  1982年   19篇
  1981年   8篇
  1979年   11篇
  1977年   12篇
  1976年   8篇
  1975年   7篇
  1974年   9篇
  1973年   9篇
  1970年   7篇
排序方式: 共有4265条查询结果,搜索用时 15 毫秒
91.
A high-throughput in planta overexpression screen of a Nicotiana benthamiana cDNA library identified a mitogen activated protein kinase kinase (MAPKK), NbMKK1, as a potent inducer of hypersensitive response (HR)-like cell death. NbMKK1-mediated cell death was attenuated in plants whereby expression of NbSIPK, an ortholog of tobacco SIPK and Arabidopsis AtMPK6, was knocked down by virus-induced gene silencing (VIGS), suggesting that NbMKK1 functions upstream of NbSIPK. In accordance with this result, NbMKK1 phosphorylated NbSIPK in vitro, and furthermore NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. VIGS of NbMKK1 in N. benthamiana resulted in a delay of Phytophthora infestans INF1 elicitin-mediated HR as well as in the reduction of resistance against a non-host pathogen Pseudomonas cichorii. Our data of NbMKK1, together with that of LeMKK4,1 demonstrate the presence of a novel defense signaling pathway involving NbMKK1/LeMKK4 and SIPK.Key Words: MAPK, defense, cell death, in planta screenMitogen activated protein kinase (MAPK) cascades are highly conserved signaling pathways in eukaryotes, comprising three tiered classes of protein kinase, MAPKKK (MAPKK kinase), MAPKK and MAPK, that sequentially relay phosphorylation signals.2 The Arabidopsis genome carries genes for 20 MAPKs, 10 MAPKKs3 and more than 25 MAPKKKs.4 In plants, MAPK signaling is known to function in various biotic4,5 and abiotic6 stress responses and cytokinesis.7 In defense signaling, extensive research has been carried out for two tobacco MAPKs, SIPK8 (salicylic-acid-induced protein kinase; hereafter designated as NtSIPK) and WIPK9 (wound-induced protein kinase = NtWIPK), and their orthologs in Arabidopsis10 (AtMPK6 and ATMPK3, respectively), partly because kinase activities of these two MAPKs are easy to detect by an in gel kinase assay using myeline basic protein (MBP) as substrate.11 Both NtSIPK and NtWIPK are activated by the interaction between host resistance (R)- gene and cognate avirulence gene of pathogen11,12 and elicitor perception by host cells.13,14 Shuqun Zhang and his group showed that an upstream kinase of both NtSIPK and NtWIPK is NtMEK2.15 Transient overexpression of constitutively active NtMEK2 caused phosphorylation of NtSIPK and NtWIPK, resulting in rapid HR-like cell death in tobacco leaves.15 Later, the same lab showed that overexpression of NtSIPK alone also caused HR-like cell death.16 The downstream target proteins of NtSIPK and AtMPK6 are being identified and include 1-aminocyclopropane-1-carboxylic acid sythase-6 (ACS-6).17,18 Although recent studies identified another MAPK cascade (NtMEK1 → Ntf6) involved in defense responses19,20 we can still say that the current research focus of MAPK defense signaling centers around the cascade comprising [NtMEK2→ NtSIPK/NtWIPK→ target proteins] of tobacco and its orthologous pathways in other plant species.In an effort to search for plant genes involved in HR-like cell death, we have been employing a high-throughput in planta expression screen of N. benthamiana cDNA libraries. In this experimental system, a cDNA library was made in a binary potato virus X (PVX)-based expression vector pSfinx.21 The cDNA library was transferred to Agrobacterium tumefaciens, and 40,000 of the bacterial colonies were individually inoculated by toothpicks onto leaf blades of N. benthamiana leaves. The phenotype around the inoculated site was observed 1–2 weeks following the inoculation. This rapid screen identified 30 cDNAs that caused cell death after overexpression, including genes coding for ubiquitin proteins, RNA recognition motif (RRM) containing proteins, a class II ethylene-responsive element binding factor (EREBP)-like protein22 and a MAPKK protein (this work). Such an in planta screening technique has been used before for the isolation of fungal21 and oomycete23,24 elicitors and necrosis inducing genes, but not for isolation of plant genes. Overexpression screening of cDNA libraries is a common practice in prokaryotes, yeast and amimal cells,25,26 so it is a surprise that this approach has not been systematically applied in plants. Given its throughput, we propose that this virus-based transient overexpression system is a highly efficient way to isolate novel plant genes by functional screen.27 Since overexpression frequently causes non-specific perturbation of signaling, genes identified by overexpression should be further validated by loss-of-function assays, for instance, VIGS.28Overexpression of the identified MAPKK gene, NbMKK1, triggered a rapid generation of H2O2, followed by HR-like cell death in N. benthamiana leaves (this work). NbMKK1-GFP fusion protein overexpression also caused cell death, and curiously NbMKK1-GFP was shown to localize consistently in the nucleus. Sequence comparison classified NbMKK1 to the Group D of MAPKKs about which little information is available. So far, a MAPKK, LeMKK4, from tomato belonging to the Group D MAPKKs, was shown to cause cell death after overexpression.1 Based on amino acid sequence similarity and phylogenetic analyses, LeMKK4 and NbMKK1 seem to be orthologs. To see whether NbMKK1 transduces signals through SIPK and WIPK, we performed NbMKK1 overexpression in N. benthamiana plants whereby the expression of either NbSIPK or NbWIPK (WIPK ortholog in N. benthamiana) was silenced by VIGS. NbMKK1 did not induce cell death in NbSIPK-silenced plants, suggesting that the NbMKK1 cell death signal is transmitted through NbSIPK. Indeed, NbMKK1 phosphorylated NbSIPK in vitro, and NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. These results suggest that NbMKK1 interacts with NbSIPK, most probably with its N-terminal docking domain, and phosphorylates NbSIPK in vivo to transduce the cell death signal downstream.NbMKK1 exhibits constitutive expression in leaves. To determine the function of NbMKK1 in defense, we silenced NbMKK1 by VIGS, and such plants were challenged with Phytophthora infestans INF1 elicitin29 and Pseudomonas cichorii, a non-host pathogen. INF1-mediated HR cell death was remarkably delayed in NbMKK1-silenced plants. Likewise, plant defense against P. cichorii was compromised in NbMKK1-silenced plants. These results indicate that NbMKK1 is an important component of signaling of INF1-mediated HR and non-host resistance to P. cichorii.Together, our analyses of NbMKK1 and independent work from Greg Martin''s lab on LeMKK41 suggest that a Group D MAPKK, NbMKK1/LeMKK4, functions upstream of SIPK and transduces defense signals in these solanaceous plants (Fig. 1). In plants as well as in other eukaryotes, it is common that kinases have multiple partners. The work on these kinases fits this concept. A single MAPK (e.g., SIPK) is phosphorylated by multiple MAPKKs (e.g., NtMEK2 and NbMKK1), and a single MAPKK (e.g., NtMEK2) can phosphorylate multiple MAPKs (e.g., NtSIPK and NtWIPK).Open in a separate windowFigure 1Defense signaling through NbMKK1/LeMKK4. Two defense signal pathways involving NtMEK2 (indicated as MEK2) → WIPK/SIPK and NtMEK1(indicated as MEK1) → Ntf6 are well documented. By our and Pedley and Martin''s1 works, another novel MAPKK, NbMKK1/LeMKK4 was demonstrated to participate in defense signaling by phosphorylation of SIPK.  相似文献   
92.
Ammonia has been shown to function as a morphogen at multiple steps during the development of the cellular slime mold Dictyostelium discoideum; however, it is largely unknown how intracellular ammonia levels are controlled. In the Dictyostelium genome, there are five genes that encode putative ammonium transporters: amtA, amtB, amtC, rhgA, and rhgB. Here, we show that AmtA regulates ammonia homeostasis during growth and development. We found that cells lacking amtA had increased levels of ammonia/ammonium, whereas their extracellular ammonia/ammonium levels were highly decreased. These results suggest that AmtA mediates the excretion of ammonium. In support of a role for AmtA in ammonia homeostasis, AmtA mRNA is expressed throughout the life cycle, and its expression level increases during development. Importantly, AmtA-mediated ammonia homeostasis is critical for many developmental processes. amtA(-) cells are more sensitive to NH(4)Cl than wild-type cells in inhibition of chemotaxis toward cyclic AMP and of formation of multicellular aggregates. Furthermore, even in the absence of exogenously added ammonia, we found that amtA(-) cells produced many small fruiting bodies and that the viability and germination of amtA(-) spores were dramatically compromised. Taken together, our data clearly demonstrate that AmtA regulates ammonia homeostasis and plays important roles in multiple developmental processes in Dictyostelium.  相似文献   
93.
94.
The purpose of the present study was to determine the degree of fitting an approximation equation for oxygen uptake (Vo(2)) in decrement-load exercise (DLE). Work rate was started from 120 watts and was decreased by a rate of 15 watts per min. The initial work rate of DLE corresponded to 72+/-10% of the work rate at anaerobic threshold determined in incremental-load exercise (ILE). Vo(2) in DLE increased rapidly, reached a peak, and decreased linearly until the end of the exercise. Vo(2) in DLE was higher than that in ILE at the same work rate except in the early periods in ILE and DLE. This difference ranged from 300 to 400 ml/min. This difference is a result of repayment of oxygen debt in DLE and from the oxygen deficit induced by the delay of response of Vo(2) in ILE. As work rate in DLE can be obtained by the difference between work rates in constant-load exercise (CLE) and ILE, we postulated that the approximation equation for Vo(2) kinetics in DLE could be expressed by a combination of approximation equations in CLE and in ILE. When time delay was taken into consideration in this equation, the fitting of data obtained by using the equation was better than that of data obtained by using the equation without a parameter of time delay. The degree of fitting ranged from 94 to 98% (r(2)). Thus, it seems that Vo(2) including oxygen debt in DLE can be approximated by the equation used in this study.  相似文献   
95.
96.
Immunological investigation has revealed that a settlement-inducing protein complex (SIPC), which induces cypris settlement of the barnacle Balanus amphitrite, is synthesized during larval development and accumulates in the cypris larva. We previously purified the SIPC from adult B. amphitrite, which was active when bound to a substratum. The SIPC is a glycoprotein of high molecular mass, consisting of three major subunits of 76, 88 and 98 kDa with lentil lectin (LCA)-binding sugar chains. In the present study, we prepared antiserum against each LCA-binding subunit of SIPC, and performed immunoblot analyses. Immunoblotting of adult extracts showed that anti-76-kDa antibody reacted only with the 76-kDa protein, whereas anti-88-kDa and anti-98-kDa antibodies reacted with both the 88-kDa and the 98-kDa proteins. Immunoblotting of larval extracts indicated that reactivity of the 76-kDa protein to anti-76-kDa antiserum increased during larval development and cyprid extracts reacted strongly. Moreover, by using immunostaining we found that the SIPC was contained in ''footprints'' of cyprids, which have been shown to act as a settlement-inducing pheromone, and is secreted onto the antennular attachment discs. The results suggest that the SIPC (or SIPC-like proteins) is involved in both adult-larva and larva-larva interactions during settlement of the barnacle B. amphitrite.  相似文献   
97.
We previously produced four monoclonal antibodies to testicular proteins of a teleost, the Nile tilapia. One of the monoclonal antibodies, TAT(Testicular Antigen of Tilapia)-10, recognizes a Mr=27,000 protein (27 kD protein), which is present in A and early B type spermatogonia, spermatids, and spermatozoa in testis. In order to clarify the function of this protein, molecular cloning was conducted. The cDNA for the 27 kD protein contains a complete open reading frame encoding 220 amino acid residues. The predicted amino acid sequence of the 27 kD protein was homologous to those of the ubiquitin carboxy-terminal hydrolases (UCH) reported in mammals. The measurement of the ubiquitin-releasing activity of the recombinant 27 kD protein revealed that the protein is the active form of UCH. Northern blot analysis showed that the UCH mRNA was expressed in ovary and brain in addition to the testis. Immunohistochemical study showed that, in brain, UCH was localized especially on the olfactory organ including the olfactory bulb and olfactory epithelium in olfactory rosetta, suggesting the involvement of the protein in chemoreceptive function. In the Tilapia ovary, UCH localized especially in pre-vitellogenic oocytes, suggesting that the enzyme activity could be important in oocyte growth. This is the first report for the cDNA cloning and cellular localization of UCH in fish. J. Exp. Zool. 293:368-383, 2002.  相似文献   
98.
We have reported that a novel c-Myc-binding protein, AMY-1, binds to cAMP-dependent protein kinase-anchoring protein 149 (AKAP149) and its splicing variant, AKAP84 and is localized in the mitochondria in a complex with RII, a regulatory subunit of cAMP-dependent protein kinase (PKA) (Furusawa, M., Ohnishi, T., Taira, T., Iguchi-Ariga, S. M. M., and Ariga, H. (2001) J. Biol. Chem. 276, 36647-36651). In this study, we further found that AMY-1 competitively bound to either AKAP95 or AKAP84 in the nucleus and the cytoplasm, respectively, in a concentration-dependent manner of either AKAP. Like AKAP84, AMY-1 was found to bind to the RII-binding region of AKAP95 in vivo and in vitro and to make a ternary complex with RII. It was also found that the formation of the complex of AMY-1 with AKAP84/95 and RII prevented a catalytic subunit from binding to this AKAP complex, leading to suppression of PKA activity. These findings suggest that AMY-1 is an important modulator of PKA.  相似文献   
99.
Horseradish peroxidase mutants containing L-p-phenylazophenylalanine (azoAla) at various positions were synthesized by using an Escherichia coli in vitro translation system. Among the 15 mutants examined, four mutants containing a single azoAla unit at the 6th, 68th, 142nd, and 179th positions, respectively, retained the peroxidase activity. The activity of the Phe68azoAla mutant was higher when the azobenzene group was in the cis form than in the trans form. On the contrary, the activity of the Phe179azoAla mutant disappeared when the azobenzene group was photoisomerized to the cis form, but recovered in the trans form. In the latter mutant, therefore, an on/off photoswitching of the peroxidase activity was attained.  相似文献   
100.
BCR/ABL tyrosine kinase generated from the chromosomal translocation t(9;22) causes chronic myelogenous leukemia and acute lymphoblastic leukemia. To examine the roles of BCR/ABL-activated individual signaling molecules and their cooperation in leukemogenesis, we inducibly expressed a dominant negative (DN) form of Ras, phosphatidylinositol 3-kinase, and STAT5 alone or in combination in p210 BCR/ABL-positive K562 cells. The inducibly expressed DN Ras (N17), STAT5 (694F), and DN phosphatidylinositol 3-kinase (Delta p85) inhibited the growth by 90, 55, and 40%, respectively. During the growth inhibition, the expression of cyclin D2 and cyclin D3 was suppressed by N17, 694F, or Delta p85; that of cyclin E by N17; and that of cyclin A by Delta p85. In addition, N17 induced apoptosis in a small proportion of K562, whereas 694F and Delta p85 were hardly effective. In contrast, coexpression of two DN mutants in any combinations induced severe apoptosis. During these cultures, the expression of Bcl-2 was suppressed by N17, 694F, or Delta p85, and that of Bcl-XL by N17. Furthermore, although K562 was resistant to interferon-alpha- and dexamethasone-induced apoptosis, disruption of one pathway by N17, 694F, or Delta p85 sensitized K562 to these reagents. These results suggested that cooperation among these molecules is required for full leukemogenic activities of BCR/ABL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号