首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2891篇
  免费   150篇
  国内免费   2篇
  2023年   9篇
  2022年   11篇
  2021年   57篇
  2020年   27篇
  2019年   44篇
  2018年   69篇
  2017年   62篇
  2016年   84篇
  2015年   121篇
  2014年   151篇
  2013年   218篇
  2012年   206篇
  2011年   234篇
  2010年   136篇
  2009年   123篇
  2008年   187篇
  2007年   182篇
  2006年   177篇
  2005年   165篇
  2004年   172篇
  2003年   170篇
  2002年   139篇
  2001年   13篇
  2000年   15篇
  1999年   17篇
  1998年   29篇
  1997年   25篇
  1996年   18篇
  1995年   21篇
  1994年   12篇
  1993年   21篇
  1992年   13篇
  1991年   10篇
  1990年   15篇
  1989年   9篇
  1988年   8篇
  1987年   13篇
  1986年   9篇
  1985年   5篇
  1984年   6篇
  1983年   9篇
  1982年   7篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1970年   2篇
  1969年   1篇
排序方式: 共有3043条查询结果,搜索用时 15 毫秒
991.
Seafloor massive sulfide (SMS) deposits are the target of available metallic resources. The toxic impacts of leachable metals from hydrothermal ore by mining operations in marine environments are a concern. However, ecotoxicological knowledge about marine algae, and particularly open ocean species, is still limited. Here, we evaluated the toxic effects of three leachable metals (i.e. Zn, Cu, and Pb) on seven marine algae, including cyanobacteria and eukaryotes, by a delayed fluorescence method. Cyanobacterial Synechococcus and Cyanobium species were sensitive to Zn and Cu, while eukaryotic algae showed various responses to heavy metal species. The prasinophycean Bathycoccus prasinos NIES‐2670 was sensitive to all metal species; this strain is a potential test strain to detect the leachable metals. A co‐culture experiment showed that the impact on community structure varies depending on leachable metal species. This study demonstrates that surveys across multiple taxonomic groups are necessary to assess the impact of SMS‐mining operations on marine ecosystems as a whole.  相似文献   
992.
Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol‐based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid‐ordered (Lo)‐phase domains in giant unilamellar vesicles, Lo‐phase‐like domains formed at lower temperatures in giant PM vesicles, and detergent‐resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid‐like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non‐raft domains, as defined here, in the PM.  相似文献   
993.

Background

The development and validation of stem cell therapies using induced pluripotent stem (iPS) cells can be optimized through translational research using pigs as large animal models, because pigs have the closest characteristics to humans among non-primate animals. As the recent investigations have been heading for establishment of the human iPS cells with naïve type characteristics, it is an indispensable challenge to develop naïve type porcine iPS cells. The pluripotency of the porcine iPS cells can be evaluated using their abilities to form chimeras. Here, we describe a simple aggregation method using parthenogenetic host embryos that offers a reliable and effective means of determining the chimera formation ability of pluripotent porcine cells.

Methodology/Significant Principal Findings

In this study, we show that a high yield of chimeric blastocysts can be achieved by aggregating the inner cell mass (ICM) from porcine blastocysts with parthenogenetic porcine embryos. ICMs cultured with morulae or 4–8 cell-stage parthenogenetic embryos derived from in vitro-matured (IVM) oocytes can aggregate to form chimeric blastocysts that can develop into chimeric fetuses after transfer. The rate of production of chimeric blastocysts after aggregation with host morulae (20/24, 83.3%) was similar to that after the injection of ICMs into morulae (24/29, 82.8%). We also found that 4–8 cell-stage embryos could be used; chimeric blastocysts were produced with a similar efficiency (17/26, 65.4%). After transfer into recipients, these blastocysts yielded chimeric fetuses at frequencies of 36.0% and 13.6%, respectively.

Conclusion/Significance

Our findings indicate that the aggregation method using parthenogenetic morulae or 4–8 cell-stage embryos offers a highly reproducible approach for producing chimeric fetuses from porcine pluripotent cells. This method provides a practical and highly accurate system for evaluating pluripotency of undifferentiated cells, such as iPS cells, based on their ability to form chimeras.  相似文献   
994.
Macrophage infiltration into adipose tissue is associated with obesity and the crosstalk between adipocytes and infiltrated macrophages has been investigated as an important pathological phenomenon during adipose tissue inflammation. Here, we sought to identify adipocyte mRNAs that are regulated by interaction with infiltrated macrophages in vivo. An anti-inflammatory vitamin, vitamin B6, suppressed macrophage infiltration into white adipose tissue and altered mRNA expression. We identified >3500 genes whose expression is significantly altered during the development of obesity in db/db mice, and compared them to the adipose tissue mRNA expression profile of mice supplemented with vitamin B6. We identified PTX3 and MMP3 as candidate genes regulated by macrophage infiltration. PTX3 and MMP3 mRNA expression in 3T3-L1 adipocytes was up-regulated by activated RAW264.7 cells and these mRNA levels were positively correlated with macrophage number in adipose tissue in vivo. Next, we screened adipose genes down-regulated by the interaction with macrophages, and isolated RASSF6 (Ras association domain family 6). RASSF6 mRNA in adipocytes was decreased by culture medium conditioned by activated RAW264.7 cells, and RASSF6 mRNA level was negatively correlated with macrophage number in adipose tissue, suggesting that adipocyte RASSF6 mRNA expression is down-regulated by infiltrated macrophages in vivo. Finally, this study also showed that decreased RASSF6 expression up-regulates mRNA expression of several genes, such as CD44 and high mobility group protein HMGA2. These data provide novel insights into the biological significance of interactions between adipocytes and macrophages in adipose tissue during the development of obesity.  相似文献   
995.

Background

Flooding significantly reduces the growth and grain yield of soybean plants. Proteomic and biochemical techniques were used to determine whether the function of cotyledon and root is altered in soybean under flooding stress.

Results

Two-day-old soybean plants were flooded for 2 days, after which the proteins from root and cotyledon were extracted for proteomic analysis. In response to flooding stress, the abundance of 73 and 28 proteins was significantly altered in the root and cotyledon, respectively. The accumulation of only one protein, 70 kDa heat shock protein (HSP70) (Glyma17g08020.1), increased in both organs following flooding. The ratio of protein abundance of HSP70 and biophoton emission in the cotyledon was higher than those detected in the root under flooding stress. Computed tomography and elemental analyses revealed that flooding stress decreases the number of calcium oxalate crystal the cotyledon, indicating calcium ion was elevated in the cotyledon under flooding stress.

Conclusion

These results suggest that calcium might play one role through HSP70 in the cotyledon under flooding stress.  相似文献   
996.

Background

Adult T-cell leukemia/lymphoma (ATLL) develops in a small proportion of human T-cell leukemia virus type I (HTLV-I)-infected individuals. However, the mechanism by which HTLV-I causes ATLL has not been fully elucidated. To provide fundamental insights into the multistep process of leukemogenesis, we have mapped the chromosomal abnormalities in 50 ATLL cases to identify potential key regulators of ATLL.

Results

The analysis of breakpoints in one ATLL case with the translocations t(14;17)(q32;q22-23) resulted in the identification of a Kruppel zinc finger gene, BCL11B, which plays a crucial role in T-cell development. Among the 7 ATLL cases that we examined by immunofluorescence analysis, 4 displayed low and one displayed moderate BCL11B signal intensities. A dramatically reduced level of the BCL11B protein was also found in HTLV-I-positive T-cell lines. The ectopic expression of BCL11B resulted in significant growth suppression in ATLL-derived cell lines but not in Jurkat cells.

Conclusions

Our genetic and functional data provide the first evidence that a reduction in the level of the BCL11B protein is a key event in the multistep progression of ATLL leukemogenesis.  相似文献   
997.

Background

MicroRNA (miRNA) is an emerging subclass of small non-coding RNAs that regulates gene expression and has a pivotal role for many physiological processes including cancer development. Recent reports revealed the role of miRNAs as ideal biomarkers and therapeutic targets due to their tissue- or disease-specific nature. Head and neck cancer (HNC) is a major cause of cancer-related mortality and morbidity, and laryngeal cancer has the highest incidence in it. However, the molecular mechanisms involved in laryngeal cancer development remain to be known and highly sensitive biomarkers and novel promising therapy is necessary.

Methodology/Principal Findings

To explore laryngeal cancer-specific miRNAs, RNA from 5 laryngeal surgical specimens including cancer and non-cancer tissues were hybridized to microarray carrying 723 human miRNAs. The resultant differentially expressed miRNAs were further tested by using quantitative real time PCR (qRT-PCR) on 43 laryngeal tissue samples including cancers, noncancerous counterparts, benign diseases and precancerous dysplasias. Significant expressional differences between matched pairs were reproduced in miR-133b, miR-455-5p, and miR-196a, among which miR-196a being the most promising cancer biomarker as validated by qRT-PCR analyses on additional 84 tissue samples. Deep sequencing analysis revealed both quantitative and qualitative deviation of miR-196a isomiR expression in laryngeal cancer. In situ hybridization confirmed laryngeal cancer-specific expression of miR-196a in both cancer and cancer stroma cells. Finally, inhibition of miR-196a counteracted cancer cell proliferation in both laryngeal cancer-derived cells and mouse xenograft model.

Conclusions/Significance

Our study provided the possibilities that miR-196a might be very useful in diagnosing and treating laryngeal cancer.  相似文献   
998.

Background

Genetic polymorphisms in the human MDM2 gene are suggested to be a tumor susceptibility marker and a prognostic factor for cancer. It has been reported that a single nucleotide polymorphism (SNP) c.309T>G in the MDM2 gene attenuates the tumor suppressor activity of p53 and accelerates tumor formation in humans.

Methodology

In this study, to detect the SNP c.309T>G in the MDM2 gene, we have developed a new SNP detection method, named “Duplex SmartAmp,” which enabled us to simultaneously detect both 309T and 309G alleles in one tube. To develop this new method, we introduced new primers i.e., nBP and oBPs, as well as two different fluorescent dyes that separately detect those genetic polymorphisms.

Results and Conclusions

By the Duplex SmartAmp method, the genetic polymorphisms of the MDM2 gene were detected directly from a small amount of genomic DNA or blood samples. We used 96 genomic DNA and 24 blood samples to validate the Duplex SmartAmp by comparison with results of the conventional PCR-RFLP method; consequently, the Duplex SmartAmp results agreed totally with those of the PCR-RFLP method. Thus, the new SNP detection method is considered useful for detecting the SNP c.309T>G in the MDM2 gene so as to judge cancer susceptibility against some cellular stress in the clinical setting, and also to handle a large number of samples and enable rapid clinical diagnosis.  相似文献   
999.
Seasonal allergic rhinitis (SAR) to the Japanese cedar, Cryptomeria japonica (JC) pollen is an IgE-mediated type I allergy affecting nasal mucosa. However, the molecular events underlying its development remain unclear. We sought to identify SAR-associated altered gene expression in nasal epithelial cells during natural exposure to JC pollen. We recruited study participants in 2009 and 2010 and collected nasal epithelial cells between February and April, which is the period of natural pollen dispersion. Fifteen patients with SAR-JC and 13 control subjects were enrolled in 2009, and 17 SAR-JC patients, 13 sensitized asymptomatic subjects (Sensitized), and 15 control subjects were enrolled in 2010. Total RNA was extracted from nasal epithelial cells and 8 SAR-JC patients and 6 control subjects in 2009 were subjected to microarray analysis with the Illumina HumanRef-8 Expression BeadChip platform. Allergen-stimulated histamine release was examined in the peripheral blood basophils isolated from patients with SAR. We identified 32 genes with significantly altered expression during allergen exposure. One of these, CST1 encodes the cysteine protease inhibitor, cystatin SN. CST1 expression in nasal epithelial cells was significantly upregulated in both the 2009 and 2010 SAR-JC groups compared with the control groups. Immunohistochemical staining confirmed the increased expression of CST1 in the nasal epithelial cells of SAR patients. Addition of exogenous CST1 to basophils inhibited JC allergen-stimulated histamine release in vitro. We propose that CST1 may contribute to inactivation of protease allergens and help re-establish homeostasis of the nasal membranes.  相似文献   
1000.
ABSTRACT

The effect of Lactobacillus plantarum SNK12 (CPLP) supplementation on mRNA levels of hippocampal neurotrophic factors and gamma aminobutyric acid receptors (GABAR) was tested. In Experiment 1, stress-free, unsupplemented and CPLP (4 × 108 cells/head)-supplemented male C57BL/6J (B6) mice were the experimental animals. In Experiment 2, intruder (male, B6) mice [negative control; unsupplemented, sub-chronic mild social defeat stress (sCSDS)-induced; and CPLP-supplemented, sCSDS-induced] were exposed to aggressor mice (adult male Slc:ICR). mRNA levels of neurotrophic factors and GABAR in hippocampal samples of these mice were analyzed. In CPLP-supplemented mice of both experiments, mRNA levels of bdnf, nt-3, and GABAR were upregulated. Moreover, a tendency toward the improvement of habituation ability (Experiment 1) and behavior (Experiment 2) was observed in mice, which may be associated with upregulated neurotrophic factors and GABAR. We demonstrated that oral supplementation of CPLP to stress-free and stress-induced mice upregulated mRNA levels of hippocampal neurotrophic factors and GABAR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号