首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2900篇
  免费   150篇
  国内免费   2篇
  2023年   9篇
  2022年   20篇
  2021年   57篇
  2020年   27篇
  2019年   44篇
  2018年   69篇
  2017年   62篇
  2016年   84篇
  2015年   121篇
  2014年   151篇
  2013年   218篇
  2012年   206篇
  2011年   234篇
  2010年   136篇
  2009年   123篇
  2008年   187篇
  2007年   182篇
  2006年   177篇
  2005年   165篇
  2004年   172篇
  2003年   170篇
  2002年   139篇
  2001年   13篇
  2000年   15篇
  1999年   17篇
  1998年   29篇
  1997年   25篇
  1996年   18篇
  1995年   21篇
  1994年   12篇
  1993年   21篇
  1992年   13篇
  1991年   10篇
  1990年   15篇
  1989年   9篇
  1988年   8篇
  1987年   13篇
  1986年   9篇
  1985年   5篇
  1984年   6篇
  1983年   9篇
  1982年   7篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1970年   2篇
  1969年   1篇
排序方式: 共有3052条查询结果,搜索用时 546 毫秒
911.
The genetic difference among individuals partly explains variance in adaptive response to exercise through gene-environment interaction. The aim of this cross-sectional study was to evaluate the role of the vitamin D receptor (VDR) gene polymorphism, which locates at the translation initiation site, in the adaptations of bone to long-term impact loading. The VDR genotypes, as detected by endonuclease Fok I, and bone phenotypes of the lumbar spine and femoral neck were examined in 44 highly trained young male athletes and 44 age-matched nonathletic controls. As a whole, the athletes had a significantly higher bone mineral content resulting from a combination of increased volume and density at both sites than the controls. When the athletes were compared with the controls within each VDR genotype, however, the increased spinal volume was found only in the athletes with the FF but not in those with the Ff genotype("F" for the absence of the endonuclease Fok I restriction site and "f" for its presence). Differences in bone mineral content in the lumbar spine and femoral neck between the controls and the athletes were greater in subjects with FF than those with Ff. Our results suggest a gene-environment interaction in that the bone phenotypes in individuals with FF adapt to impact loading by producing stronger bone structure than those with the Ff do.  相似文献   
912.
Various cytokines are thought to play a role in muscle regeneration, however, the interaction and mechanisms of action of these cytokines remains largely unknown. In this study, we investigated the role of HGF, IGF-I, and IGF-II during myogenesis using the regeneration model of skeletal muscle as well as myoblast culture. RT-PCR analysis revealed that HGF and IGF-I expressions were markedly upregulated, in regenerating muscle. In contrast, there was no significant difference in IGF-II expression between normal and regenerating muscle. Immunohistochemical analysis demonstrated that HGF was expressed mostly by myocytes during the early stages of muscle regeneration. Additionally, HGF inhibited the formation of myotubes by myoblasts, but promoted cellular proliferation. Otherwise, IGF-I and IGF-II were expressed by myocytes through the early to middle stages of muscle regeneration. The addition of HGF to myoblast growing in vitro significantly increased the number of cells. These findings indicate that these three cytokines have pleiotropic effects in regenerating skeletal muscle.  相似文献   
913.
Five molecular forms of glucagon and two molecular forms of insulin were characterized from the kaluga sturgeon. Substitutions occurred at two to thirteen internal amino acid residues among the five molecular forms of glucagons, indicating that these glucagons were encoded by five distinct genes. The amino acid sequences of two insulins from the kaluga sturgeon were identical to those of paddlefish insulin-II and Russian sturgeon insulin except that kaluga sturgeon insulin-I had an extension of five residues at the B-chain N-terminus. This is the first demonstration that more than two molecular forms of glucagon have been characterized from a single animal species.  相似文献   
914.
915.
Transient neonatal diabetes mellitus (TNDM) is a rare disease characterized by intrauterine growth retardation, dehydration, and failure to thrive due to a lack of normal insulin secretion. This disease is associated with paternal uniparental disomy or paternal duplication of chromosome 6, suggesting that the causative gene(s) for TNDM is imprinted. Recently, Gardner et al. (1999, J. Med. Genet. 36: 192–196) proposed that a candidate gene for TNDM lies within chromosome 6q24.1–q24.3. To find human imprinted genes, we performed a database search for EST sequences that mapped to this region, followed by RT-PCR analysis using monochromosomal hybrid cells with a human chromosome 6 of defined parental origin. Here we report the identification of a novel imprinted gene, HYMAI. This gene exhibits differential DNA methylation between the two parental alleles at an adjacent CpG island and is expressed only from the paternal chromosome. A previously characterized imprinted gene, ZAC/LOT1, is located 70 kb downstream of HYMAI and is also expressed only from the paternal allele. In the pancreas, both genes are moderately expressed. HYMAI and ZAC/LOT1 are therefore candidate genes involved in TNDM. Furthermore, the human chromosome 6q24 region is syntenic to mouse chromosome 10 and represents a novel imprinted domain.  相似文献   
916.
917.
Although the analysis of linkage disequilibrium (LD) plays a central role in many areas of population genetics, the sampling variance of LD is known to be very large with high sensitivity to numbers of nucleotide sites and individuals sampled. Here we show that a genome-wide analysis of the distribution of heterozygous sites within a single diploid genome can yield highly informative patterns of LD as a function of physical distance. The proposed statistic, the correlation of zygosity, is closely related to the conventional population-level measure of LD, but is agnostic with respect to allele frequencies and hence likely less prone to outlier artifacts. Application of the method to several vertebrate species leads to the conclusion that >80% of recombination events are typically resolved by gene-conversion-like processes unaccompanied by crossovers, with the average lengths of conversion patches being on the order of one to several kilobases in length. Thus, contrary to common assumptions, the recombination rate between sites does not scale linearly with distance, often even up to distances of 100 kb. In addition, the amount of LD between sites separated by <200 bp is uniformly much greater than can be explained by the conventional neutral model, possibly because of the nonindependent origin of mutations within this spatial scale. These results raise questions about the application of conventional population-genetic interpretations to LD on short spatial scales and also about the use of spatial patterns of LD to infer demographic histories.  相似文献   
918.
919.
920.
A general method was developed for the construction of a library of mutant genes. The method, termed random insertion/deletion (RID) mutagenesis, enables deletion of an arbitrary number of consecutive bases at random positions and, at the same time, insertion of a specific sequence or random sequences of an arbitrary number into the same position. The applicability of the RID mutagenesis was demonstrated by replacing three randomly selected consecutive bases by the BglII recognition sequence (AGATCT) in the GFPUV gene. In addition, the randomly selected three bases were replaced by a mixture of 20 codons. These mutants were expressed in Escherichia coli, and those that showed fluorescence properties different from the wild-type GFP were selected. A yellow fluorescent protein and an enhanced green fluorescent protein, neither of which could be obtained by error-prone PCR mutagenesis, were found among the six mutants selected. Several mutants of the DsRed protein that show different fluorescence properties were also obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号