首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2791篇
  免费   142篇
  国内免费   2篇
  2935篇
  2024年   1篇
  2023年   10篇
  2022年   20篇
  2021年   55篇
  2020年   27篇
  2019年   43篇
  2018年   67篇
  2017年   61篇
  2016年   83篇
  2015年   121篇
  2014年   151篇
  2013年   197篇
  2012年   203篇
  2011年   233篇
  2010年   135篇
  2009年   121篇
  2008年   184篇
  2007年   171篇
  2006年   172篇
  2005年   163篇
  2004年   168篇
  2003年   164篇
  2002年   134篇
  2001年   11篇
  2000年   10篇
  1999年   16篇
  1998年   27篇
  1997年   23篇
  1996年   18篇
  1995年   21篇
  1994年   10篇
  1993年   21篇
  1992年   9篇
  1991年   7篇
  1990年   11篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   9篇
  1985年   5篇
  1984年   6篇
  1983年   9篇
  1982年   7篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有2935条查询结果,搜索用时 15 毫秒
931.
Ephs and FGFRs belong to a superfamily of receptor tyrosine kinases, playing important roles in stem cell biology. We previously reported that EphA4 and FGFR form a heterodimer following stimulation with ligands, trans-activating each other and signaling through a docking protein, FRS2α, that binds to both receptors. Here, we investigated whether the interaction between EphA4 and FGFRs can be generalized to other Ephs and FGFRs, and, in addition, examined the downstream signal mediating their function in embryonic neural stem/progenitor cells. We revealed that various Ephs and FGFRs interact with each other through similar molecular domains. When neural stem/progenitor cells were stimulated with FGF2 and ephrin-A1, the signal transduced from the EphA4/FGFR/FRS2α complex enhanced self-renewal, while stimulation with ephrin-A1 alone induced neuronal differentiation. The downstream signal required for neuronal differentiation appears to be MAP kinase mainly linked to the Ras family of G proteins. MAP kinase activation was delayed and sustained, distinct from the transient activation induced by FGF2. Interestingly, this effect on neuronal differentiation required the presence of FGFRs. Specific FGFR inhibitor almost completely abolished the function of ephrin-A1 stimulation. These findings suggest that the ternary complex of EphA, FGFR and FRS2α formed by ligand stimulation regulates self-renewal and differentiation of mouse embryonic neural stem/progenitor cells by ligand-specific fine tuning of the downstream signal via FRS2α.  相似文献   
932.
933.
934.
935.
A phosphorylated protein with a molecular mass of 25,000 (pp25) is involved in Xenopus laevis vitellogenin B1 and partially overlaps with phosvitin and lipovitellin 2. The protease responsible for pp25 degradation was studied in vitro since this occurs during embryogenesis. Initially, a protease thought to be a contaminant of the purified pp25 preparation was analyzed and an antipain-sensitive protease presumed to be involved. When commercially available proteases were examined, pp25 was not degraded by calpain I or 20S proteasome, but it was degraded by cathepsin L in vitro. A survey of the protease responsible for pp25 degradation in the cytoplasm of Xenopus oocytes found partially purified pp25 was degraded in partly antipain-sensitive manner. These results suggest that an antipain-sensitive protease or cathepsin L (or a related protease) is a candidate for pp25 degradation.  相似文献   
936.
Abstract

A new cyclic AMP analogue, adenosine- 3′, 5′-cyclic methyl phosphonate (cAMP-Me) was chemically synthesized. This compound was not a substrate for phosphodiesterase, and it did not activate cAMP-dependent protein kinases (type I or type II). However, it inhibited cAMP phosphodiesterase and protein kinase at milimolar concentration levels. It also inhibited malignant cell proliferation in vitro.  相似文献   
937.
Mycopathologia - Invasive trichosporonosis is a rare and lethal fungal infection that occurs in immunocompromised patients. Breakthrough trichosporonosis can occur in patients treated with...  相似文献   
938.
939.
We report a simple method, using p53 suppression and nontransforming L-Myc, to generate human induced pluripotent stem cells (iPSCs) with episomal plasmid vectors. We generated human iPSCs from multiple donors, including two putative human leukocyte antigen (HLA)-homozygous donors who match ~20% of the Japanese population at major HLA loci; most iPSCs are integrated transgene-free. This method may provide iPSCs suitable for autologous and allologous stem-cell therapy in the future.  相似文献   
940.
Caffeine is one of the most frequently ingested neuroactive compounds. All known mechanisms of apoptosis induced by caffeine act through cell cycle modulation or p53 induction. It is currently unknown whether caffeine-induced apoptosis is associated with other cell death mechanisms, such as autophagy. Herein we show that caffeine increases both the levels of microtubule-associated protein 1 light chain 3-II and the number of autophagosomes, through the use of western blotting, electron microscopy and immunocytochemistry techniques. Phosphorylated p70 ribosomal protein S6 kinase (Thr389), S6 ribosomal protein (Ser235/236), 4E-BP1 (Thr37/46) and Akt (Ser473) were significantly decreased by caffeine. In contrast, ERK1/2 (Thr202/204) was increased by caffeine, suggesting an inhibition of the Akt/mTOR/p70S6K pathway and activation of the ERK1/2 pathway. Although insulin treatment phosphorylated Akt (Ser473) and led to autophagy suppression, the effect of insulin treatment was completely abolished by caffeine addition. Caffeine-induced autophagy was not completely blocked by inhibition of ERK1/2 by U0126. Caffeine induced reduction of mitochondrial membrane potentials and apoptosis in a dose-dependent manner, which was further attenuated by the inhibition of autophagy with 3-methyladenine or Atg7 siRNA knockdown. Furthermore, there was a reduced number of early apoptotic cells (annexin V positive, propidium iodide negative) among autophagy-deficient mouse embryonic fibroblasts treated with caffeine than their wild-type counterparts. These results support previous studies on the use of caffeine in the treatment of human tumors and indicate a potential new target in the regulation of apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号