首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   25篇
  2023年   3篇
  2022年   7篇
  2021年   6篇
  2020年   5篇
  2019年   7篇
  2018年   15篇
  2017年   8篇
  2016年   14篇
  2015年   25篇
  2014年   35篇
  2013年   38篇
  2012年   56篇
  2011年   33篇
  2010年   25篇
  2009年   25篇
  2008年   31篇
  2007年   36篇
  2006年   32篇
  2005年   44篇
  2004年   47篇
  2003年   34篇
  2002年   32篇
  2001年   18篇
  2000年   10篇
  1999年   14篇
  1996年   13篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   16篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   7篇
  1985年   9篇
  1984年   11篇
  1983年   5篇
  1982年   8篇
  1981年   7篇
  1980年   8篇
  1979年   4篇
  1978年   7篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
排序方式: 共有748条查询结果,搜索用时 31 毫秒
71.
Lu HD  Chen G  Tanigawa H  Roe AW 《Neuron》2010,68(5):1002-1013
In mammals, the perception of motion starts with direction-selective neurons in the visual cortex. Despite numerous studies in monkey primary and second visual cortex (V1 and V2), there has been no evidence of direction maps in these areas. In the present study, we used optical imaging methods to study the organization of motion response in macaque V1 and V2. In contrast to the findings in other mammals (e.g., cats and ferrets), we found no direction maps in macaque V1. Robust direction maps, however, were found in V2 thick/pale stripes and avoided thin stripes. In many cases direction maps were located within thick stripes and exhibited pinwheel or linear organizations. The presence of motion maps in V2 points to a newfound prominence of V2 in motion processing, for contributing to motion perception in the dorsal pathway and/or for motion cue-dependent form perception in the ventral pathway.  相似文献   
72.
Alzheimer's disease (AD) is characterized by progressive cognitive impairment and the formation of senile plaques. Silymarin, an extract of milk thistle, has long been used as a medicinal herb for liver diseases. Here we report marked suppression of amyloid β-protein (Aβ) fibril formation and neurotoxicity in PC12 cells after silymarin treatment in vitro. In vivo studies had indicated a significant reduction in brain Aβ deposition and improvement in behavioral abnormalities in amyloid precursor protein (APP) transgenic mice that had been preventively treated with a powdered diet containing 0.1% silymarin for 6 months. The silymarin-treated APP mice also showed less anxiety than the vehicle-treated APP mice. These behavioral changes were associated with a decline in Aβ oligomer production induced by silymarin intake. These results suggest that silymarin is a promising agent for the prevention of AD.  相似文献   
73.
Directional migration of primordial germ cells (PGCs) toward future gonads is a common feature in many animals. In zebrafish, mouse and chicken, SDF-1/CXCR4 chemokine signaling has been shown to have an important role in PGC migration. In Xenopus, SDF-1 is expressed in several regions in embryos including dorsal mesoderm, the target region that PGCs migrate to. CXCR4 is known to be expressed in PGCs. This relationship is consistent with that of more well-known animals. Here, we present experiments that examine whether chemokine signaling is involved in PGC migration of Xenopus. We investigate: (1) Whether injection of antisense morpholino oligos (MOs) for CXCR4 mRNA into vegetal blastomere containing the germ plasm or the precursor of PGCs disturbs the migration of PGCs? (2) Whether injection of exogenous CXCR4 mRNA together with MOs can restore the knockdown phenotype? (3) Whether the migratory behavior of PGCs is disturbed by the specific expression of mutant CXCR4 mRNA or SDF-1 mRNA in PGCs? We find that the knockdown of CXCR4 or the expression of mutant CXCR4 in PGCs leads to a decrease in the PGC number of the genital ridges, and that the ectopic expression of SDF-1 in PGCs leads to a decrease in the PGC number of the genital ridges and an increase in the ectopic PGC number. These results suggest that SDF-1/CXCR4 chemokine signaling is involved in the migration and survival or in the differentiation of PGCs in Xenopus.  相似文献   
74.
A morroniside cinnamic acid conjugate was prepared and evaluated on E-selectin mediated cell–cell adhesion as an important role in inflammatory processes. 7-O-Cinnamoylmorroniside exhibited excellent anti-inflammatory activity (IC50 = 49.3 μM) by inhibiting the expression of E-selectin; further, it was more active than another cinnamic-acid-conjugated iridoid glycoside (harpagoside; IC50 = 88.2 μM), 7-O-methylmorroniside, and morroniside itself. As a result, 7-O-cinnamoylmorroniside was observed to be a potent inhibitor of TNF-α-induced E-selectin expression.  相似文献   
75.
Despite increasing importance of protein glycosylation, most of the large-scale glycoproteomics have been limited to profiling the sites of N-glycosylation. However, in-depth knowledge of protein glycosylation to uncover functions and their clinical applications requires quantitative glycoproteomics eliciting both peptide and glycan sequences concurrently. Here we describe a novel strategy for the multiplexed quantitative mouse serum glycoproteomics based on a specific chemical ligation, namely, reverse glycoblotting technique, focusing sialic acids and multiple reaction monitoring (MRM). LC-MS/MS analysis of de-glycosylated peptides identified 270 mouse serum peptides (95 glycoproteins) as sialylated glycopeptides, of which 67 glycopeptides were fully characterized by MS/MS analyses in a straightforward manner. We revealed the importance of a fragment ion containing innermost N-acetylglucosamine (GlcNAc) residue as MRM transitions regardless the sequence of the peptides. Versatility of the reverse glycoblotting-assisted MRM assays was demonstrated by quantitative comparison of 25 targeted glycopeptides from 16 proteins between mice with homo and hetero types of diabetes disease model.Clinical proteomics focusing on the identification and validation of biomarkers and the discovery of proteins as therapeutic targets is an emerging and highly important area of proteomics. Biomarkers are measurable indicators of a specific biological state (particularly one relevant to the risk of contraction) and the presence or the stage of disease, and are thus expected to be useful for the prediction, detection, and diagnosis of disease as well as to follow the efficacy, toxicology, and side effects of drug treatment, and to provide new functional insights into biological processes.At present, proteomics methods based on mass spectrometry (MS) have emerged as the preferred strategy for discovery of diagnostic, prognostic, and therapeutic protein biomarkers. Most biomarker discovery studies use unbiased, “identified-based” approaches that rely on high performance mass spectrometers and extensive sample processing. Semiquantitative comparisons of protein relative abundance between disease and control patient samples are used to identify proteins that are differentially expressed and, thus, to populate lists of potential biomarkers. De novo proteomics discovery experiments often result in tens to hundreds of candidate biomarkers that must be subsequently verified in serum. However, despite the large numbers of putative biomarkers, only a small number of them are passed through the development and validation process into clinical practice, and their rate of introduction is declining. The first non-standard abbreviation (MS above is standard) must be footnoted the same as the abbreviation footnote, and MRM must be the first abbreviation in the list because it is the one footnoted. After that the order does not matter.Targeted proteomics using multiple reaction monitoring (MRM)1 is emerging as a technology that complements the discovery capabilities of shotgun strategies as well as an alternative powerful novel MS-based approach to measure a series of candidate biomarkers (17). Therefore, MRM is expected to provide a powerful high throughput platform for biomarker validation, although clinical validation of novel biomarkers has been traditionally relying on immunoassays (8, 9). MRM exploits the unique capabilities of triple quadrupoles (QQQ) MS for quantitative analysis. In MRM, the first and the third quadrupoles act as filters to specifically select predefined m/z values corresponding to the peptide precursor ion and specific fragment ion of the peptide, whereas the second quadrupole serves as collision cell. Several such transitions (precursor/fragment ion pairs) are monitored over time, yielding a set of chromatographic traces with retention time and signal intensity for a specific transition as coordinates. These measurements have been multiplexed to provide 30 or more specific assays in one run. Such methods are slowly gaining acceptance in the clinical laboratory for the routine measurement of endogenous metabolites (10) (e.g. in screening newborns for a panel of inborn errors of metabolism) some drugs (11) (e.g. immunosuppressants), and the component analysis of sugars (12).One of the profound challenges in clinical proteomics is the need to handle highly complex biological mixtures. This complexity presents unique analytical challenges that are further magnified with the use of clinical serum/plasma samples to search for novel biomarkers of human disease. The serum proteome is composed of tens of thousands of unique proteins, of which concentrations may exceed 10 orders of magnitude. Protein glycosylation, one of the most common post-translational modifications, generates tremendous diversity, complexity, and heterogeneity of gene products. It changes the biological and physical properties of proteins, which include functions as signals or ligands to control their distribution, antigenicity, metabolic fate, stability, and solubility. Protein glycosylation, in particular by N-linked glycans, is prevalent in proteins destined for extracellular environments. These include proteins on the extracellular side of the plasma membrane, secreted proteins, and proteins contained in body fluids (such as blood serum, cerebrospinal fluid, urine, breast milk, saliva, lung lavage fluid, or pancreatic juice). Considering that such body fluids are most easily accessible for diagnostic and therapeutic purposes, it is not surprising that many clinical biomarkers and therapeutic targets are glycoproteins. These include, for example, cancer antigen 125 (CA125) in ovarian cancer, human epidermal growth factor receptor 2 (Her2/neu) in breast cancer, and prostate-specific antigen (PSA) in prostate cancer. In addition, changes in the extent of glycosylation and the structure of N-glycans or O-glycans attached to proteins on the cell surface and in body fluids have been shown to correlate with cancer and other disease states, highlighting the clinical importance of this modification as an indicator or effector of pathologic mechanisms (1316). Thus, clinical proteomic platforms should have capability to provide protein glycosylation information as well as sufficient analytical depth to reliably detect and quantify specific proteins with sufficient accuracy and throughput.To improve the detection limits to the required sensitivities, one needs to dramatically reduce the complexity of the sera samples. For focused glycoproteomics, several techniques using lectins or antibodies enabling the large-scale identification of glycoproteins have recently been developed (1719). Notably, Zhang et al. reported a method for the selective isolation of peptides based on chemical oxidation of the carbohydrate moiety and subsequent conjugation to a solid support using hydrazide chemistry (2026). However, it is not possible to provide any structural information about N-glycans because the MS analysis is performed on peptides of which N-glycans are removed preferentially by treating with peptide N-glycanase (PNGase). In 2007, we developed a method for rapid enrichment analysis of peptides bearing sialylated N-glycans on the MALDI-TOF-MS platform (27). The method involves highly selective oxidation of sialic acid residues of glycopeptides to elaborate terminal aldehyde group and subsequent enrichment by chemical ligation with a polymer reagent, namely, reverse glycoblotting technique inspired from an original concept of glycoblotting method (28). This method, in principle, is capable identifying both glycan and peptide sequences concurrently. Recently, Nilsson et al. reported that glycopeptides from human cerebrospinal fluid can be enriched on the basis of the same principle as the reverse glycoblotting protocol, and captured glycopeptides were analyzed with ESI FT-ICR MS (29). Because it is well known that sialic acids play important roles in various biological processes including cell differentiation, immune response, and oncogenesis (3034), our attention has been directed toward feasibility of the reverse glycoblotting technique in quantitative analysis of the specific glycopeptides carrying sialic acid(s) by combining with multiplexed MRM-based MS.  相似文献   
76.
Embryonic stem (ES) cells hold promise as a source for cell transplantation treatment of diseases such as type I diabetes. Further, cells releasing bioactive substances from ES cell progeny may be concentrated and purified for clinical applications. Although ES cell lines that express reporter genes have been established to isolate cells releasing bioactive substances, other difficulties must be overcome before these genetically modified cells can be used for gene therapy in human patients. Fluorescence- or magnetic-activated cell sorters are commonly used to isolate specific cells using antibodies against cell surface antigens. However, for some cells, such as insulin-producing beta cells, specific surface antigens have not yet been identified. In this study, we developed a simple and efficient method to identify and purify insulin- and alpha-fetoprotein-producing cells. A nitrocellulose membrane treated with anti-insulin or anti-alpha-fetoprotein antibodies was placed on a cell layer to trap insulin or alpha-fetoprotein released from the cells. The location of specific substance-producing cells was identified by immunostaining the membrane. The insulin-releasing cells were selectively collected from the culture dish using a cloning ring and transferred to another culture plate.  相似文献   
77.
We investigated the role of apoptosis signal-regulating kinase 1 (ASK1) in ischemia/reperfusion (I/R)-induced acute kidney injury (AKI). Blood urea nitrogen (BUN) and serum creatinine were significantly higher in ASK1+/+ mice than in ASK1−/− mice after I/R injury. Renal histology of ASK1+/+ mice showed significantly greater tubular necrosis and degradation. In ASK1−/− mice, phosphorylation of ASK1, JNK, and p38K, and the number of TUNEL-positive cells and infiltrated leukocytes decreased after I/R injury. Apoptotic changes were significantly decreased in cultured renal tubular epithelial cells (TECs) from ASK1−/− mice under hypoxic condition. Transfection with dominant-active ASK1 induced apoptosis in TECs. Protein expression of monocyte chemoattractant protein-1 (MCP-1) was significantly weaker in ASK1−/− mice after I/R injury. Transfection with dominant negative-ASK1 significantly decreased MCP-1 production in TECs. These results demonstrated that ASK1 is activated in I/R-induced AKI, and blockage of ASK1 attenuates renal tubular apoptosis, MCP-1 expression, and renal function.  相似文献   
78.
79.
Pulmonary hypertension (PH) causes right ventricular (RV) hypertrophy and, according to the extent of pressure overload, eventual heart failure. We tested the hypothesis that the mechanical stress in PH-RV impairs the vasoreactivity of the RV coronary microvessels of different sizes with increased superoxide levels. Five-week-old male Sprague-Dawley rats were injected with monocrotaline (n=126) to induce PH or with saline as controls (n=114). After 3 wk, coronary arterioles (diameter = 30-100 microm) and small arteries (diameter = 100-200 microm) in the RV were visualized using intravital videomicroscopy. We evaluated ACh-induced vasodilation alone, in the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME), in the presence of tetraethylammonium (TEA) or catalase with or without L-NAME, and in the presence of SOD. The degree of suppression in vasodilation by L-NAME and TEA was used as indexes of the contributions of endothelial nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), respectively. In PH rats, ACh-induced vasodilation was significantly attenuated in both arterioles and small arteries, especially in arterioles. This decreased vasodilation was largely attributable to reduced NO-mediated vasoreactivity, whereas the EDHF-mediated vasodilation was relatively robust. The suppressive effect on arteriolar vasodilation by catalase was similar to TEA in both groups. Superoxide, as measured by lucigenin chemiluminescence, was significantly elevated in the RV tissues in PH. SOD significantly ameliorated the impairment of ACh-induced vasodilation in PH. Robust EDHF function will play a protective role in preserving coronary microvascular homeostasis in the event of NO dysfunction with increased superoxide levels.  相似文献   
80.
High-throughput SNP detection using nano-scale engineered biomagnetite   总被引:2,自引:0,他引:2  
A semi-automated system for the large-scale detection of single nucleotide polymorphisms (SNPs) has been developed based on allele-specific oligonucleotide hybridization and thermal dissociation curve analysis using nano-scale engineered biomagnetite (bacterial magnetic particles; BacMPs). For reliable detection in large numbers of samples, several conditions for the capture of target DNA on nano-sized BacMPs and the denaturation of double-stranded DNA were optimized. The most efficient target DNA capture was observed using short PCR amplicons (69 bp). Captured DNAs were denatured using 50 mM NaOH. With these optimizations, large-scale SNP detection was performed on 822 samples of the transforming growth factor (TGF)-beta1 gene, which is rich in both GC content and repetitive sequences. High reliability for the semi-automated BacMP-based SNP detection system was confirmed following comparison to traditional sequencing-based methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号