首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   20篇
  2023年   4篇
  2021年   5篇
  2020年   4篇
  2019年   6篇
  2018年   9篇
  2017年   8篇
  2016年   12篇
  2015年   24篇
  2014年   26篇
  2013年   30篇
  2012年   45篇
  2011年   29篇
  2010年   20篇
  2009年   23篇
  2008年   32篇
  2007年   38篇
  2006年   33篇
  2005年   45篇
  2004年   39篇
  2003年   29篇
  2002年   30篇
  2001年   21篇
  2000年   3篇
  1999年   8篇
  1997年   2篇
  1996年   13篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   10篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1987年   3篇
  1986年   6篇
  1985年   6篇
  1984年   4篇
  1982年   2篇
  1981年   3篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有612条查询结果,搜索用时 15 毫秒
51.
The effect of halothane anesthesia on changes in the extracellular concentrations of dopamine (DA) and its metabolites (3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA)) induced by neuroleptics was studied using in vivo microdialysis techniques. Halothane attenuated haloperidol-induced dopamine release and enhanced clozapine-induced dopamine release in the rat striatum.A microdialysis probe was implanted into the right striatum of male SD rats. Rats were given saline or the same volume of 200 microg kg(-1) haloperidol (D(2) receptor antagonist), 10 mg kg(-1) sulpiride (D(2) and D(3) antagonist), or 10 mg kg(-1) clozapine (D(4) and 5-HT(2) antagonist) intraperitoneally with or without 1-h halothane anesthesia (0.5 or 1.5%). Halothane anesthesia did not change the extracellular concentration of DA, but increased the metabolite concentrations in a dose-dependent manner. The increased DA concentration induced by haloperidol was significantly attenuated by halothane anesthesia, whereas the metabolite concentrations were unaffected. Halothane had no effect on the changes in the concentrations of DA or its metabolites induced by sulpiride. The clozapine-induced increases in DA and its metabolites were enhanced by halothane anesthesia.Our results suggest that halothane anesthesia modifies the DA release modulated by antipsychotic drugs in different ways, depending on the effects of dopaminergic or serotonergic pathways.  相似文献   
52.
53.
54.
The level of drebrin, an evolutionarily conserved f-actin-binding protein that regulates synaptic structure and function, is reduced in the brains of patients with chronic neurodegenerative diseases such as Alzheimer’s disease (AD) and Down’s syndrome (DS). It was suggested that excitotoxic neuronal death caused by overactivation of NMDA-type glutamate receptors (NMDARs) occurs in AD and DS; however, the relationship between excitotoxicity and drebrin loss is unknown. Here, we show that drebrin is a novel target of calpain-mediated proteolysis under excitotoxic conditions induced by the overactivation of NMDARs. In cultured rodent neurons, degradation of drebrin was confirmed by the detection of proteolytic fragments, as well as a reduction in the amount of full-length drebrin. Notably, the NMDA-induced degradation of drebrin in mature neurons occurred concomitantly with a loss of f-actin. Furthermore, pharmacological inhibition of f-actin loss facilitated the drebrin degradation, suggesting a functional linkage between f-actin and drebrin degradation. Biochemical analyses using purified drebrin and calpain revealed that calpain degraded drebrin directly in vitro. Furthermore, cerebral ischemia also induced the degradation of drebrin in vivo. These findings suggest that calpain-mediated degradation of drebrin is a fundamental pathology of neurodegenerative diseases mediated by excitotoxicity, regardless of whether they are acute or chronic. Drebrin regulates the synaptic clustering of NMDARs; therefore, degradation of drebrin under excitotoxic conditions may modulate NMDAR-mediated signal transductions, including pro-survival signaling. Overall, the results presented here provide novel insights into the molecular basis of cellular responses to excitotoxicity in vitro and in vivo.  相似文献   
55.

Background

Osteopontin (OPN) is a multifunctional protein expressed in a variety of tissues and cells. Recent studies revealed increased OPN expression in the inflamed intestinal tissues of patients with inflammatory bowel disease (IBD). The role of OPN in the pathophysiology of IBD, however, remains unclear.

Aims

To investigate the role of OPN in the development of intestinal inflammation using a murine model of IBD, interleukin-10 knock out (IL-10 KO) mice.

Methods

We compared the development of colitis between IL-10 KO and OPN/IL-10 double KO (DKO) mice. OPN expression in the colonic tissues of IL-10 KO mice was examined by fluorescence in situ hybridization (FISH) analysis. Enteric microbiota were compared between IL-10 KO and OPN/IL-10 DKO mice by terminal restriction fragment length polymorphism analysis. The effect of OPN on macrophage phagocytic function was evaluated by phagocytosis assay.

Results

OPN/IL-10 DKO mice had an accelerated onset of colitis compared to IL-10 KO mice. FISH analysis revealed enhanced OPN synthesis in the colonic epithelial cells of IL-10 KO mice. OPN/IL-10 DKO mice had a distinctly different enteric bacterial profile with a significantly lower abundance of Clostridium subcluster XIVa and a greater abundance of Clostridium cluster XVIII compared to IL-10 KO mice. Intracellular OPN deletion in macrophages impaired phagocytosis of fluorescence particle-conjugated Escherichia coli in vitro. Exogenous OPN enhanced phagocytosis by OPN-deleted macrophages when administered at doses of 1 to 100 ng/ml, but not 1000 ng/ml.

Conclusions

OPN deficiency accelerated the spontaneous development of colitis in mice with disrupted gut microbiota and macrophage phagocytic activity.  相似文献   
56.
When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.  相似文献   
57.
Alzheimer's disease (AD) is characterized by progressive cognitive impairment and the formation of senile plaques. Silymarin, an extract of milk thistle, has long been used as a medicinal herb for liver diseases. Here we report marked suppression of amyloid β-protein (Aβ) fibril formation and neurotoxicity in PC12 cells after silymarin treatment in vitro. In vivo studies had indicated a significant reduction in brain Aβ deposition and improvement in behavioral abnormalities in amyloid precursor protein (APP) transgenic mice that had been preventively treated with a powdered diet containing 0.1% silymarin for 6 months. The silymarin-treated APP mice also showed less anxiety than the vehicle-treated APP mice. These behavioral changes were associated with a decline in Aβ oligomer production induced by silymarin intake. These results suggest that silymarin is a promising agent for the prevention of AD.  相似文献   
58.
Despite increasing importance of protein glycosylation, most of the large-scale glycoproteomics have been limited to profiling the sites of N-glycosylation. However, in-depth knowledge of protein glycosylation to uncover functions and their clinical applications requires quantitative glycoproteomics eliciting both peptide and glycan sequences concurrently. Here we describe a novel strategy for the multiplexed quantitative mouse serum glycoproteomics based on a specific chemical ligation, namely, reverse glycoblotting technique, focusing sialic acids and multiple reaction monitoring (MRM). LC-MS/MS analysis of de-glycosylated peptides identified 270 mouse serum peptides (95 glycoproteins) as sialylated glycopeptides, of which 67 glycopeptides were fully characterized by MS/MS analyses in a straightforward manner. We revealed the importance of a fragment ion containing innermost N-acetylglucosamine (GlcNAc) residue as MRM transitions regardless the sequence of the peptides. Versatility of the reverse glycoblotting-assisted MRM assays was demonstrated by quantitative comparison of 25 targeted glycopeptides from 16 proteins between mice with homo and hetero types of diabetes disease model.Clinical proteomics focusing on the identification and validation of biomarkers and the discovery of proteins as therapeutic targets is an emerging and highly important area of proteomics. Biomarkers are measurable indicators of a specific biological state (particularly one relevant to the risk of contraction) and the presence or the stage of disease, and are thus expected to be useful for the prediction, detection, and diagnosis of disease as well as to follow the efficacy, toxicology, and side effects of drug treatment, and to provide new functional insights into biological processes.At present, proteomics methods based on mass spectrometry (MS) have emerged as the preferred strategy for discovery of diagnostic, prognostic, and therapeutic protein biomarkers. Most biomarker discovery studies use unbiased, “identified-based” approaches that rely on high performance mass spectrometers and extensive sample processing. Semiquantitative comparisons of protein relative abundance between disease and control patient samples are used to identify proteins that are differentially expressed and, thus, to populate lists of potential biomarkers. De novo proteomics discovery experiments often result in tens to hundreds of candidate biomarkers that must be subsequently verified in serum. However, despite the large numbers of putative biomarkers, only a small number of them are passed through the development and validation process into clinical practice, and their rate of introduction is declining. The first non-standard abbreviation (MS above is standard) must be footnoted the same as the abbreviation footnote, and MRM must be the first abbreviation in the list because it is the one footnoted. After that the order does not matter.Targeted proteomics using multiple reaction monitoring (MRM)1 is emerging as a technology that complements the discovery capabilities of shotgun strategies as well as an alternative powerful novel MS-based approach to measure a series of candidate biomarkers (17). Therefore, MRM is expected to provide a powerful high throughput platform for biomarker validation, although clinical validation of novel biomarkers has been traditionally relying on immunoassays (8, 9). MRM exploits the unique capabilities of triple quadrupoles (QQQ) MS for quantitative analysis. In MRM, the first and the third quadrupoles act as filters to specifically select predefined m/z values corresponding to the peptide precursor ion and specific fragment ion of the peptide, whereas the second quadrupole serves as collision cell. Several such transitions (precursor/fragment ion pairs) are monitored over time, yielding a set of chromatographic traces with retention time and signal intensity for a specific transition as coordinates. These measurements have been multiplexed to provide 30 or more specific assays in one run. Such methods are slowly gaining acceptance in the clinical laboratory for the routine measurement of endogenous metabolites (10) (e.g. in screening newborns for a panel of inborn errors of metabolism) some drugs (11) (e.g. immunosuppressants), and the component analysis of sugars (12).One of the profound challenges in clinical proteomics is the need to handle highly complex biological mixtures. This complexity presents unique analytical challenges that are further magnified with the use of clinical serum/plasma samples to search for novel biomarkers of human disease. The serum proteome is composed of tens of thousands of unique proteins, of which concentrations may exceed 10 orders of magnitude. Protein glycosylation, one of the most common post-translational modifications, generates tremendous diversity, complexity, and heterogeneity of gene products. It changes the biological and physical properties of proteins, which include functions as signals or ligands to control their distribution, antigenicity, metabolic fate, stability, and solubility. Protein glycosylation, in particular by N-linked glycans, is prevalent in proteins destined for extracellular environments. These include proteins on the extracellular side of the plasma membrane, secreted proteins, and proteins contained in body fluids (such as blood serum, cerebrospinal fluid, urine, breast milk, saliva, lung lavage fluid, or pancreatic juice). Considering that such body fluids are most easily accessible for diagnostic and therapeutic purposes, it is not surprising that many clinical biomarkers and therapeutic targets are glycoproteins. These include, for example, cancer antigen 125 (CA125) in ovarian cancer, human epidermal growth factor receptor 2 (Her2/neu) in breast cancer, and prostate-specific antigen (PSA) in prostate cancer. In addition, changes in the extent of glycosylation and the structure of N-glycans or O-glycans attached to proteins on the cell surface and in body fluids have been shown to correlate with cancer and other disease states, highlighting the clinical importance of this modification as an indicator or effector of pathologic mechanisms (1316). Thus, clinical proteomic platforms should have capability to provide protein glycosylation information as well as sufficient analytical depth to reliably detect and quantify specific proteins with sufficient accuracy and throughput.To improve the detection limits to the required sensitivities, one needs to dramatically reduce the complexity of the sera samples. For focused glycoproteomics, several techniques using lectins or antibodies enabling the large-scale identification of glycoproteins have recently been developed (1719). Notably, Zhang et al. reported a method for the selective isolation of peptides based on chemical oxidation of the carbohydrate moiety and subsequent conjugation to a solid support using hydrazide chemistry (2026). However, it is not possible to provide any structural information about N-glycans because the MS analysis is performed on peptides of which N-glycans are removed preferentially by treating with peptide N-glycanase (PNGase). In 2007, we developed a method for rapid enrichment analysis of peptides bearing sialylated N-glycans on the MALDI-TOF-MS platform (27). The method involves highly selective oxidation of sialic acid residues of glycopeptides to elaborate terminal aldehyde group and subsequent enrichment by chemical ligation with a polymer reagent, namely, reverse glycoblotting technique inspired from an original concept of glycoblotting method (28). This method, in principle, is capable identifying both glycan and peptide sequences concurrently. Recently, Nilsson et al. reported that glycopeptides from human cerebrospinal fluid can be enriched on the basis of the same principle as the reverse glycoblotting protocol, and captured glycopeptides were analyzed with ESI FT-ICR MS (29). Because it is well known that sialic acids play important roles in various biological processes including cell differentiation, immune response, and oncogenesis (3034), our attention has been directed toward feasibility of the reverse glycoblotting technique in quantitative analysis of the specific glycopeptides carrying sialic acid(s) by combining with multiplexed MRM-based MS.  相似文献   
59.
Our recent report demonstrated that apoptosis-specific autoantibodies against granzyme B-induced cleavage fragments of SS-B (La) were found in the sera from patients with primary Sj?gren's syndrome. The objective of this study was identified by the intracellular redistribution of La autoantigen during granzyme B-induced apoptosis. We developed green fluorescence protein (GFP)-La and GFP-LaDelta220 (generation of granzyme B-specific cleavage of La protein) fusion proteins. GFP-La protein was localized in the nucleus, whereas the GFP-LaDelta220 protein predominantly existed in the cytoplasm in transformed A293T cells. Nuclear GFP-La protein was translocated to cytoplasm after granzyme B enriched YT cells incubation. La protein in human salivary grand HSG cells is cleaved and translocated from the nucleus to the cytoplasm after YT cell co-cultivation. These results suggest that La protein is cleaved by granzyme B and N-terminal La fragment (27 kD) translocated to the cytoplasm, thus leading to a novel autoantibody production during granzyme B-mediated cytotoxicity.  相似文献   
60.
Embryonic stem (ES) cells hold promise as a source for cell transplantation treatment of diseases such as type I diabetes. Further, cells releasing bioactive substances from ES cell progeny may be concentrated and purified for clinical applications. Although ES cell lines that express reporter genes have been established to isolate cells releasing bioactive substances, other difficulties must be overcome before these genetically modified cells can be used for gene therapy in human patients. Fluorescence- or magnetic-activated cell sorters are commonly used to isolate specific cells using antibodies against cell surface antigens. However, for some cells, such as insulin-producing beta cells, specific surface antigens have not yet been identified. In this study, we developed a simple and efficient method to identify and purify insulin- and alpha-fetoprotein-producing cells. A nitrocellulose membrane treated with anti-insulin or anti-alpha-fetoprotein antibodies was placed on a cell layer to trap insulin or alpha-fetoprotein released from the cells. The location of specific substance-producing cells was identified by immunostaining the membrane. The insulin-releasing cells were selectively collected from the culture dish using a cloning ring and transferred to another culture plate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号