首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1234篇
  免费   62篇
  国内免费   1篇
  2023年   7篇
  2021年   9篇
  2019年   5篇
  2018年   16篇
  2017年   7篇
  2016年   19篇
  2015年   35篇
  2014年   38篇
  2013年   54篇
  2012年   57篇
  2011年   72篇
  2010年   46篇
  2009年   30篇
  2008年   55篇
  2007年   65篇
  2006年   40篇
  2005年   64篇
  2004年   65篇
  2003年   68篇
  2002年   70篇
  2001年   47篇
  2000年   29篇
  1999年   25篇
  1998年   14篇
  1997年   12篇
  1996年   9篇
  1995年   12篇
  1994年   7篇
  1993年   8篇
  1992年   33篇
  1991年   25篇
  1990年   31篇
  1989年   27篇
  1988年   20篇
  1987年   16篇
  1986年   14篇
  1985年   16篇
  1984年   12篇
  1983年   11篇
  1982年   12篇
  1981年   7篇
  1980年   8篇
  1979年   6篇
  1978年   15篇
  1976年   7篇
  1974年   5篇
  1972年   4篇
  1970年   4篇
  1969年   8篇
  1965年   5篇
排序方式: 共有1297条查询结果,搜索用时 15 毫秒
311.
A combined system of bismuth triflate [Bi(OTf)(3)] and boron trifluoride etherate (BF(3).OEt(2)) in dichloromethane is an efficient promoter for the glycosylation of N-acetylneuraminic acid derivatives. The co-existence of two acid catalysts such as Bi(OTf)(3)-BF(3).OEt(2) or Bi(OTf)(3)-PPA is confirmed to be essential for obtaining high yields of glycosylation products with p-nitrobenzyl alcohol, which also turned to be superior to those reported previously.  相似文献   
312.
Acute respiratory distress syndrome (ARDS) is an acute lung injury of high mortality rate, and sepsis syndrome is one of the most frequent causes of ARDS. Metabolites of arachidonic acid, including thromboxanes and leukotrienes, are proinflammatory mediators and potentially involved in the development of ARDS. A key enzyme for the production of these inflammatory mediators is cytosolic phospholipase A(2) (cPLA(2)). Recently, it has been reported that arachidonyl trifluoromethyl ketone (ATK) is a potent inhibitor of cPLA(2). In the present study, we hypothesized that pharmacological intervention of cPLA(2) could affect acute lung injury. To test this hypothesis, we examined the effects of ATK in a murine model of acute lung injury induced by septic syndrome. The treatment with ATK significantly attenuated lung injury, polymorphonuclear neutrophil sequestration, and deterioration of gas exchange caused by lipopolysaccharide and zymosan administration. The current observations suggest that pharmacological intervention of cPLA(2) could be a novel therapeutic approach to acute lung injury caused by sepsis syndrome.  相似文献   
313.
PURPOSE: We aimed to determine the effects of human umbilical cord blood (UCB)-derived natural killer T (NKT) cells as immunological effectors against hematological malignancies, as well as auto- or allo-dendritic cells (DCs) or EB transformed cell lines (EBCLs). MATERIALS: TCRValpha24(+) Vbeta11(+) UCB- or PB-NKT cells were isolated by sorting and activated by alpha-galactosylceramide-pulsed autologous DCs. UCB-NK cells were induced from CD34(+) cells by stem cell factor plus IL-15. UCB-T cells were primarily activated by anti-CD3 monoclonal antibody. All those effectors were cultured with IL-2 (100 U/ml), and their cytotoxic activities were evaluated by (51)Cr-release assay. UCB-NKT cells were cultured with IL-12, IL-18 or higher dose of IL-2 (1000 U/ml), and again tested for the cytotoxicity against selected targets. RESULTS: UCB-NKT cells exhibited a pattern of killing activity against various hematological malignancies similar to that of UCB-NK cells, but could not kill K562, which was a vulnerable target for NK cells. The level of activity was quite similar to that of PB-NKT cells. In contrast, OKT-3-activated UCB-T lymphocytes showed a stronger and wider spectrum of killing compared with UCB-NK or NKT cells. IL-12, IL-18 or a higher dose of IL-2 upregulated the activity; however several targets, including fresh leukemic cells, still remained resistant. NKT cells killed auto- or allo-DCs at a level similar to that of T cells, but could not kill allo-EBCLs, which were efficiently killed by T cells. While NK cells showed only marginal or no killing against DC or EBCLs. DISCUSSION: The anti-cancer activity of human NKT cells depends on the concentrations or the combination of Th1-cytokines. Basically, those cells might not be contributing to the immune surveillance of hematological malignancies, as shown by a relatively low cytotoxicity against malignant cells, together with the quite strong killing against auto-DCs.  相似文献   
314.
The purpose of this study is to evaluate local levels of interleukin-1 beta (IL-1 beta), -4 (IL-4), -6 (IL-6), and tumour necrosis factor-alpha (TNF-alpha), in a model of murine osteomyelitis due to Staphylococcus aureus.Cytokine levels in supernatants derived from bone homogenates were determined by enzyme-linked immunosorbent assay, for 28 days following the direct implantation of murine tibiae with S.aureus. Levels of IL-1 beta and IL-6 in infected bone were elevated in the early post-infection period and then decreased. In contrast, TNF-alpha levels remained elevated 3 to 28 days post-infection, while IL-4 levels were elevated late in the course of infection. The histopathology of infected bone showed predominant infiltration of inflammatory cells and bone resorption 3 to 7 days after infection, and bone resorption and adjacent areas of formation 14 to 28 days after infection. These results suggest that the elevated IL-1 beta and IL-6 levels induced by infection may be related to bone damage mainly in the early phase of infection, and that TNF-alpha and IL-4 may at least in part be associated with histopathological changes, including both bone resorption and formation in the later phase of this osteomyelitis model.  相似文献   
315.
We have characterized galectin family proteins in adult tissues of Xenopus laevis and purified 14-kDa and 36-kDa proteins from the liver. The liver galectins showed comparable hemagglutination activities to those of mammalian galectins. Furthermore, we isolated five galectin cDNAs from a Xenopus liver library. These cDNAs revealed that X. laevis galectins (xgalectins) form a family consisting of at least proto and tandem repeat types based on their domain structures, like the mammalian galectin family. Two proto-type xgalectins, -Ia and -Ib, exhibited a high sequence identity (91%) with each other at the amino acid level and were most similar (49-50% identity) to human galectin-1. From their sequence similarity and ubiquitous tissue distributions, xgalectins-Ia and -Ib both seemed to be Xenopus homologues of mammalian galectin-1. Three tandem repeat-type xgalectins were newly identified. Two of them, xgalectins-IIa and -IIIa, seemed to be homologous to human galectins-4 and -9, respectively, judging from their high sequence similarities (42-50% identity). However, xgalectin-IVa seemed to be a novel type. Distributions of mRNAs of xgalectins were analyzed by northern hybridization. In addition to adult tissues, either of three tandem repeat-type xgalectins were expressed in whole embryos. Moreover, amino acid sequence analysis of liver proteins indicated that xgalectins-Ia, -IIa, and -IIIa are produced as abundant galectins in the adult liver.  相似文献   
316.
Human galectin-9 is a beta-galactoside-binding protein consisting of two carbohydrate recognition domains (CRDs) and a linker peptide. We have shown that galectin-9 represents a novel class of eosinophil chemoattractants (ECAs) produced by activated T cells. A previous study demonstrated that the carbohydrate binding activity of galectin-9 is indispensable for eosinophil chemoattraction and that the N- and C-terminal CRDs exhibit comparable ECA activity, which is substantially lower than that of full-length galectin-9. In this study, we investigated the roles of the two CRDs in ECA activity in conjunction with the sugar-binding properties of the CRDs. In addition, to address the significance of the linker peptide structure, we compare the three isoforms of galectin-9, which only differ in the linker peptide region, in terms of ECA activity. Recombinant proteins consisting of two N-terminal CRDs (galectin-9NN), two C-terminal CRDs (galectin-9CC), and three isoforms of galectin-9 (galectin-9S, -9M, and -9L) were generated. All the recombinant proteins had hemagglutination activity comparable to that of the predominant wild-type galectin-9 (galectin-9M). Galectin-9NN and galectin-9CC induced eosinophil chemotaxis in a manner indistinguishable from the case of galectin-9M. Although the isoform of galectin-9 with the longest linker peptide, galectin-9L, exhibited limited solubility, the three isoforms showed comparable ECA activity over the concentration range tested. The interactions between N- and C-terminal CRDs and glycoprotein glycans and glycolipid glycans were examined using frontal affinity chromatography. Both CRDs exhibited high affinity for branched complex type sugar chain, especially for tri- and tetraantennary N-linked glycans with N-acetyllactosamine units, and the oligosaccharides inhibited the ECA activity at low concentrations. These results suggest that the N- and C-terminal CRDs of galectin-9 interact with the same or a closely related ligand on the eosinophil membrane when acting as an ECA and that ECA activity does not depend on a specific structure of the linker peptide.  相似文献   
317.
Light-dependent K(+) channels underlying a hyperpolarizing response of one extraocular (simple) photoreceptor, Ip-2 cell, in the marine mollusc Onchidium ganglion were examined using cell-attached and inside-out patch-clamp techniques. A previous report (Gotow, T., T. Nishi, and H. Kijima. 1994. Brain Res. 662:268-272) showed that a depolarizing response of the other simple photoreceptor, A-P-1 cell, results from closing of the light-dependent K(+) channels that are activated by cGMP. In the cell-attached patch recordings of Ip-2 cells, external artificial seawater (ASW) was replaced with a modified ASW containing 150 mM K(+) and 200 mM Mg(2+) to suppress any synaptic input and to maintain the membrane potential constant. When Ip-2 cells were equilibrated with this modified ASW, the internal K(+) concentration was estimated to be 260 mM. Light-dependent single-channels in the cell-attached patch on these cells were opened by light but scarcely by voltage. After confirming the light-dependent channel activity in the cell-attached patches, an application of cGMP to the excised inside-out patches newly activated a channel that disappeared on removal of cGMP. Open and closed time distributions of this cGMP-activated channel could be described by the sum of two exponents with time constants tau(o1), tau(o2) and tau(c1), tau(c2), respectively, similar to those of the light-dependent channel. In both the channels, tau(o1) and tau(o2) in ms ranges were similar to each other, although tau(c2) over tens of millisecond ranges was different. tau(o1), tau(o2), and the mean open time tau(o) were both independent of light intensity, cGMP concentration, and voltage. In both channels, the open probability increased as the membrane was depolarized, without changing any of tau(o2) or tau(o). In both, the reversal potentials using 200- and 450-mM K(+)-filled pipettes were close to the K(+) equilibrium potentials, suggesting that both the channels are primarily K(+) selective. Both the mean values of the channel conductance were estimated to be the same at 62 and 91 pS in 200- and 450-mM K(+) pipettes at nearly 0 mV, respectively. Combining these findings with those in the above former report, it is concluded that cGMP is a second messenger which opens the light-dependent K(+) channel of Ip-2 to cause hyperpolarization, and that the channel is the same as that of A-P-1 closed by light.  相似文献   
318.
319.
To evaluate the difference of ventilatory and gas exchange response differences between arm and leg exercise, six healthy young men underwent ramp exercise testing at a rate of 15 W.min-1 on a cycle ergometer separately under either spontaneous (SPNT) or fixed (FIX) breathing modes, respectively. Controlled breathing was defined as a breathing frequency (fb; 30 breaths.min-1) which was neither equal to, nor a multiple of, cranking frequency (50 rev.min-1) to prevent coupling of locomotion and respiratory movement, i.e., so-called locomotor-respiratory coupling (LRC). Breath-by-breath oxygen uptake (VO2), ventilation (VE), CO2 output (VCO2), tidal volume (VT), fb and end-tidal PCO2 (PETCO2) were determined using a computerized metabolic cart. Arm exercise engendered a higher level of VO2 at each work rate than leg exercise under both FIX and SPNT conditions. However, FIX did not notably affect the VO2 response during either arm or leg exercise at each work rate compared to SPNT. During SPNT a significantly higher fb and lower PETCO2 during arm exercise was found compared with leg exercise up to a fb of 30 breaths.min-1 while VE and VT were nearly the same. During fixed breathing when fb was fixed at a higher rate than during SPNT, a significantly lower PETCO2 was observed during both exercise modes. These results suggest that: 1) FIX breathing does not affect the VO2 response during either arm or leg exercise even when non-synchronization between limb locomotion movement and breathing rate was adopted; 2) at a fb of 30 breaths.min-1 FIX breathing induced a hyperventilation resulting in a lower PETCO2 which was not associated with the metabolic rate during either arm or leg exercise, showing that VE during only leg exercise under the FIX condition was significantly higher than under the SPNT condition.  相似文献   
320.
The store-operated calcium channel (SOC) located in the plasma membrane (PM) mediates capacitative entry of extracellular calcium after depletion of intracellular calcium stores in the endoplasmic or sarcoplasmic reticulum (ER/SR). An intimate interaction between the PM and the ER/SR is essential for the operation of this calcium signalling pathway. Mitsugumin 29 (MG29) is a synaptophysin-family-related protein located in the junction between the PM and SR of skeletal muscle. Here, we identify SOC in skeletal muscle and characterise its regulation by MG29 and the ryanodine receptor (RyR) located in the SR. Targeted deletion of mg29 alters the junctional membrane structure, causes severe dysfunction of SOC and SR calcium homeostasis and increases the susceptibility of muscle to fatigue stimulation. Severe dysfunction of SOC is also identified in muscle cells lacking both type 1 and type 3 RyRs, indicating that SOC activation requires an intact interaction between the PM and the SR, and is linked to conformational changes of RyRs. Whereas defective SOC seems to be inconsequential to short-term excitation-contraction coupling, the slow cumulative calcium entry through SOC is crucial for long-term calcium homeostasis, such that reduced SOC activity exaggerates muscle fatigue under conditions of intensive exercise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号