首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1234篇
  免费   62篇
  国内免费   1篇
  1297篇
  2023年   7篇
  2021年   9篇
  2019年   5篇
  2018年   16篇
  2017年   7篇
  2016年   19篇
  2015年   35篇
  2014年   38篇
  2013年   54篇
  2012年   57篇
  2011年   72篇
  2010年   46篇
  2009年   30篇
  2008年   55篇
  2007年   65篇
  2006年   40篇
  2005年   64篇
  2004年   65篇
  2003年   68篇
  2002年   70篇
  2001年   47篇
  2000年   29篇
  1999年   25篇
  1998年   14篇
  1997年   12篇
  1996年   9篇
  1995年   12篇
  1994年   7篇
  1993年   8篇
  1992年   33篇
  1991年   25篇
  1990年   31篇
  1989年   27篇
  1988年   20篇
  1987年   16篇
  1986年   14篇
  1985年   16篇
  1984年   12篇
  1983年   11篇
  1982年   12篇
  1981年   7篇
  1980年   8篇
  1979年   6篇
  1978年   15篇
  1976年   7篇
  1974年   5篇
  1972年   4篇
  1970年   4篇
  1969年   8篇
  1965年   5篇
排序方式: 共有1297条查询结果,搜索用时 15 毫秒
291.
Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen in both developing and industrialized countries. AatA, an outer-membrane protein that is a homolog of E. coli TolC, facilitates the export of the dispersin protein Aap across the outer membrane in EAEC. To identify which amino acids are important for this export activity, site-directed mutagenesis of the carboxy terminus was performed. An insertional mutant of aatA was complemented with each of several deletion mutants, and was examined for Aap secretion. The results showed that three nonpolar amino acids at positions 381-383 (Phe-Leu-Leu) were required for the activity, and these residues were located at the base of carboxy-terminal elongation in the equatorial domain of AatA.  相似文献   
292.
Galectin-8 and galectin-9, which each consist of two carbohydrate recognition domains (CRDs) joined by a linker peptide, belong to the tandem-repeat-type subclass of the galectin family. Alternative splicing leads to the formation of at least two and three distinct splice variants (isoforms) of galectin-8 and galectin-9, respectively, with tandem-repeat-type structures. The isoforms share identical CRDs and differ only in the linker region. In a search for differences in biological activity among the isoforms, we found that their isoforms with the longest linker peptide, that is, galectin-8L and galectin-9L (G8L and G9L), are highly susceptible to thrombin cleavage, whereas the predominant isoforms, galectin-8M and galectin-9M (G8M and G9M), and other members of human galectin family so far examined were resistant to thrombin. Amino acid sequence analysis of proteolytic fragments and site-directed mutagenesis showed that the thrombin cleavage sites (-IAPRT- and -PRPRG- for G8L and G9L, respectively) resided within the linker peptides. Although intact G8L stimulated neutrophil adhesion to substrate more efficiently than G8M, the activity of G8L but not that of G8M decreased on thrombin digestion. Similarly, thrombin treatment almost completely abolished eosinophil chemoattractant (ECA) activity of G9L. These observations suggest that G8L and G9L play unique roles in relation to coagulation and inflammation.  相似文献   
293.
Extensive apoptotic oocyte reduction occurs during fetal ovarian development. The regulatory pathways responsible for oocyte selection to programmed cell death are, however, poorly understood. The aim of this study was to investigate the potential involvement of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5 and decoy receptors TRAIL-R3/DcR1 and TRAIL-R4/DcR2 in the apoptotic process characterizing human fetal and adult ovaries. For this purpose, in situ hybridization and immunohistochemistry were applied to human fetal and adult ovarian samples to study the mRNA and protein expression of TRAIL pathway components, and a human granulosa cell tumor-derived cell line (KGN) was used to elucidate functional effects of TRAIL on apoptosis. TRAIL was expressed in human fetal ovary from the 11th week until term. The pro-apoptotic TRAIL-R2/DR5 and the anti-apoptotic TRAIL-R4/DcR2 were also expressed in human ovaries throughout the fetal period. Among the different ovarian cell types, these TRAIL pathway components were mainly localized in the oocytes, and their expression increased towards term. Expression of TRAIL-R1/DR4 and TRAIL-R3/DcR1 was negligible in all of the fetal ovaries studied. Adult ovaries expressed TRAIL, TRAIL-R2/DR5, TRAIL-R3/DcR1 and TRAIL-R4/DcR2 in granulosa cells and oocytes of small primary/secondary follicles as well as in granulosa and theca cells of more developed antral follicles. In KGN cells, TRAIL efficiently induced apoptosis in a dose-dependent manner, and this was blocked by a caspase inhibitor. The results indicate a role of the TRAIL pathway components in the regulation of granulosa cell apoptosis in in vitro and suggest that these factors may have a role in regulating ovarian apoptosis also in vivo.  相似文献   
294.
Among four types of bacterial restriction enzymes that cleave a foreign DNA depending on its methylation status, type I enzymes composed of three subunits are interesting because of their unique DNA cleavage and translocation mechanisms performed by the restriction subunit (HsdR). The elucidated N-terminal fragment structure of a putative HsdR subunit from Vibrio vulnificus YJ016 reveals three globular domains. The nucleolytic core within an N-terminal nuclease domain (NTD) is composed of one basic and three acidic residues, which include a metal-binding site. An ATP hydrolase (ATPase) site at the interface of two RecA-like domains (RDs) is located close to the probable DNA-binding site for translocation, which is far from the NTD nucleolytic core. Comparison of relative domain arrangements with other functionally related ATP and/or DNA complex structures suggests a possible translocation and restriction mechanism of the HsdR subunit. Furthermore, careful analysis of its sequence and structure implies that a linker helix connecting two RDs and an extended region within the nuclease domain may play a central role in switching the DNA translocation into the restriction activity.  相似文献   
295.
GLUT4 shows decreased levels in failing human adult hearts. We speculated that GLUT4 expression in cardiac muscle may be fine-tuned by microRNAs. Forced expression of miR-133 decreased GLUT4 expression and reduced insulin-mediated glucose uptake in cardiomyocytes. A computational miRNA target prediction algorithm showed that KLF15 is one of the targets of miR-133. It was confirmed that over-expression of miR-133 reduced the protein level of KLF15, which reduced the level of the downstream target GLUT4. Cardiac myocytes infected with lenti-decoy, in which the 3′UTR with tandem sequences complementary to miR-133 was linked to the luciferase reporter gene, had decreased miR-133 levels and increased levels of GLUT4. The expression levels of KLF15 and GLUT4 were decreased at the left ventricular hypertrophy and congestive heart failure stage in a rat model. The present results indicated that miR-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiomyocytes.  相似文献   
296.
Defective membrane repair can contribute to the progression of muscular dystrophy. Although mutations in caveolin-3 (Cav3) and dysferlin are linked to muscular dystrophy in human patients, the molecular mechanism underlying the functional interplay between Cav3 and dysferlin in membrane repair of muscle physiology and disease has not been fully resolved. We recently discovered that mitsugumin 53 (MG53), a muscle-specific TRIM (Tri-partite motif) family protein (TRIM72), contributes to intracellular vesicle trafficking and is an essential component of the membrane repair machinery in striated muscle. Here we show that MG53 interacts with dysferlin and Cav3 to regulate membrane repair in skeletal muscle. MG53 mediates active trafficking of intracellular vesicles to the sarcolemma and is required for movement of dysferlin to sites of cell injury during repair patch formation. Mutations in Cav3 (P104L, R26Q) that cause retention of Cav3 in Golgi apparatus result in aberrant localization of MG53 and dysferlin in a dominant-negative fashion, leading to defective membrane repair. Our data reveal that a molecular complex formed by MG53, dysferlin, and Cav3 is essential for repair of muscle membrane damage and also provide a therapeutic target for treatment of muscular and cardiovascular diseases that are linked to compromised membrane repair.Membrane recycling and remodeling contribute to multiple cellular functions, including cell fusion events during myogenesis and maintenance of sarcolemma integrity in striated muscle. During the life cycle of striated muscle, membrane repair is a fundamental process in maintaining cellular integrity, as shown by recent studies that link defective membrane repair to the progression of muscular dystrophy (13). Repair of the plasma membrane damage requires recruitment of intracellular vesicles to injury sites (4, 5). One protein that has been linked to membrane repair in skeletal muscle is dysferlin (6, 7), which is thought to fuse intracellular vesicles to patch the damaged membrane and restore sarcolemmal integrity following muscle injury. Like dysferlin, caveolin-3 (Cav3)3 is a muscle-specific protein, and many mutations in Cav3, including P104L, R26Q, and C71W, have been linked to muscular dystrophy (811). Despite extensive research efforts on Cav3 and dysferlin (1214), the molecular function of these two proteins in membrane repair in muscle physiology and dystrophy have not been fully defined.Animal model studies reveal that either loss or gain of Cav3 function both result in dystrophic phenotypes in skeletal muscle (15, 16), suggesting that associated cellular components may be involved in the etiology of Cav3-related dystrophy. Although the discovery of dysferlin highlights the importance of membrane repair in the etiology of muscular dystrophy, dysferlin itself does not appear to participate in recruitment of intracellular vesicles because dysferlin−/− muscle retains accumulation of vesicles near membrane damage sites (7). This indicates that proteins other than dysferlin are required for nucleation of intracellular vesicles at the sites of acute membrane damage. Recently, we discovered that MG53, a muscle-specific TRIM family protein (TRIM72), is an essential component of the acute membrane repair machinery. MG53 acts as a sensor of oxidation to nucleate recruitment of intracellular vesicles to the injury site for membrane patch formation (17). We also found that MG53 can regulate membrane budding and exocytosis in muscle cells, and this membrane-recycling function of MG53 can be modulated through a functional interaction with Cav3 (18).Here we present evidence that MG53 interacts with dysferlin to facilitate intracellular vesicle trafficking during repair of acute membrane damage. In addition, we show that transgenic overexpression of P104L-Cav3 in striated muscle produces defects in membrane repair that are linked to altered subcellular distribution of MG53 and dysferlin. Our results suggest that altered MG53 localization can be used as a marker for muscular dystrophy involving reduced sarcolemmal membrane repair capacity due to Cav3 mutation, and potentially, in other forms of dystrophy as well.  相似文献   
297.
298.
Although the basic principle of nucleotide excision repair (NER), which can eliminate various DNA lesions, have been dissected at the genetic, biochemical and cellular levels, the important in vivo regulation of the critical damage recognition step is poorly understood. Here we analyze the in vivo dynamics of the essential NER damage recognition factor XPC fused to the green fluorescence protein (GFP). Fluorescence recovery after photobleaching analysis revealed that the UV-induced transient immobilization of XPC, reflecting its actual engagement in NER, is regulated in a biphasic manner depending on the number of (6-4) photoproducts and titrated by the number of functional UV-DDB molecules. A similar biphasic UV-induced immobilization of TFIIH was observed using XPB-GFP. Surprisingly, subsequent integration of XPA into the NER complex appears to follow only the low UV dose immobilization of XPC. Our results indicate that when only a small number of (6-4) photoproducts are generated, the UV-DDB-dependent damage recognition pathway predominates over direct recognition by XPC, and they also suggest the presence of rate-limiting regulatory steps in NER prior to the assembly of XPA.  相似文献   
299.
A series of 2,4,6 trisubstituted pyrimidines and triazines have been synthesized and screened for its in vitro antileishmanial activity profile in promastigote model. Nine compounds have shown > 94% inhibition against promastigotes at a concentration of 10 microg/mL.  相似文献   
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号