首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1231篇
  免费   62篇
  国内免费   1篇
  2023年   5篇
  2021年   9篇
  2019年   5篇
  2018年   16篇
  2017年   7篇
  2016年   19篇
  2015年   35篇
  2014年   38篇
  2013年   54篇
  2012年   57篇
  2011年   72篇
  2010年   46篇
  2009年   30篇
  2008年   55篇
  2007年   65篇
  2006年   40篇
  2005年   64篇
  2004年   65篇
  2003年   68篇
  2002年   70篇
  2001年   47篇
  2000年   29篇
  1999年   25篇
  1998年   14篇
  1997年   12篇
  1996年   9篇
  1995年   12篇
  1994年   7篇
  1993年   8篇
  1992年   33篇
  1991年   25篇
  1990年   31篇
  1989年   27篇
  1988年   20篇
  1987年   16篇
  1986年   14篇
  1985年   16篇
  1984年   12篇
  1983年   11篇
  1982年   12篇
  1981年   7篇
  1980年   8篇
  1979年   6篇
  1978年   15篇
  1976年   7篇
  1974年   5篇
  1972年   4篇
  1970年   4篇
  1969年   8篇
  1965年   5篇
排序方式: 共有1294条查询结果,搜索用时 15 毫秒
131.
Bronchial asthma is an increasingly common disorder that remains poorly understood and difficult to manage. The disease is characterized by airway hyperresponsiveness, chronic inflammation, and mucus overproduction. Based on the finding that leukotriene B4 receptor 1 (BLT1) is expressed highly in Th2 lymphocytes, we analyzed the roles of BLT1 using an OVA-induced bronchial asthma model. BLT1-null mice did not develop airway hyperresponsiveness, eosinophilic inflammation, and hyperplasia of goblet cells. Attenuated symptoms were accompanied by reduced IgE production, and accumulation of IL-5 and IL-13 in bronchoalveolar lavage fluid, suggesting attenuated Th2-type immune response in BLT1-null mice. Peribronchial lymph node cells of sensitized BLT1-null mice showed much attenuated proliferation and production of Th2 cytokines upon re-stimulation with Ag in vitro. Thus, LTB4-BLT1 axis is required for the development of Th2-type immune response, and blockade of LTB4 functions through BLT1 would be novel and useful in the effort to ameliorate bronchial asthma and related Th2-biased immune disorders.  相似文献   
132.
A nitrate reductase-inactivator protein has been purified 16,000-foldfrom spinach leaves by pH 5 treatment, chromatography on SE53,Con A-Sepharose, and chromatofocusing. The yield was 12%, thespecific activity was 115 units mg–1. Polyacrylamide gelelectrophoresis of the final purified inactivator fraction yielded2 major protein bands and both bands exhibited nitrate reductase-inactivatoractivity. Analysis of this inactivator protein by gel filtrationand SDS-gel electrophoresis revealed protein stainable materialonly in a molecular weight range of 110,000–115,000. SDSgel electrophoresis under reducing conditions yielded 2 proteinbands corresponding to molecular weights of 51,000 and 53,000.The proteolytic mapping for the two separated subunits appearedsimilar and possibly identical. (Received October 28, 1991; Accepted February 24, 1992)  相似文献   
133.
Kon T  Nishiura M  Ohkura R  Toyoshima YY  Sutoh K 《Biochemistry》2004,43(35):11266-11274
Cytoplasmic dynein is a microtubule-based motor protein that is responsible for most intracellular retrograde transports along microtubule filaments. The motor domain of dynein contains six tandemly linked AAA (ATPases associated with diverse cellular activities) modules, with the first four containing predicted nucleotide-binding/hydrolysis sites (P1-P4). To dissect the functions of these multiple nucleotide-binding/hydrolysis sites, we expressed and purified Dictyostelium dynein motor domains in which mutations were introduced to block nucleotide binding at each of the four AAA modules, and then examined their detailed biochemical properties. The P1 mutant was trapped in a strong-binding state even in the presence of ATP and lost its motile activity. The P3 mutant also showed a high affinity for microtubules in the presence of ATP and lost most of the microtubule-activated ATPase activity, but retained microtubule sliding activity, although the sliding velocity of the mutant was more than 20-fold slower than that of the wild type. In contrast, mutation in the P2 or P4 site did not affect the apparent binding affinity of the mutant for microtubules in the presence of ATP, but reduced ATPase and microtubule sliding activities. These results indicate that ATP binding and its hydrolysis only at the P1 site are essential for the motor activities of cytoplasmic dynein, and suggest that the other nucleotide-binding/hydrolysis sites regulate the motor activities. Among them, nucleotide binding at the P3 site is not essential but is critical for microtubule-activated ATPase and motile activities of cytoplasmic dynein.  相似文献   
134.
Growth-blocking peptide (GBP) is a 25-amino acid cytokine isolated from the lepidopteran insect Pseudaletia separata. GBP exhibits various biological activities such as regulation of larval growth of insects, proliferation of a few kinds of cultured cells, and stimulation of a class of insect immune cells called plasmatocytes. The tertiary structure of GBP consists of a well structured core domain and disordered N and C termini. Our previous studies revealed that, in addition to the structured core, specific residues in the unstructured N-terminal region (Glu1 and Phe3) are also essential for the plasmatocyte-stimulating activity. In this study, a number of deletion, insertion, and site-directed mutants targeting the unstructured N-terminal residues of GBP were constructed to gain more detailed insight into the mode of interaction between the N-terminal region and GBP receptor. Alteration of the backbone length of the linker region between the core structure and N-terminal domain reduced plasmatocyte-stimulating activity. The substitutions of Gly5 or Gly6 in this linker region with more bulky residues, such as Phe and Pro, also remarkably reduced this activity. We conclude that the interaction of GBP with its receptor depends on the relative position of the N-terminal domain to the core structure, and therefore the backbone flexibility of Gly residues in the linker region is necessary for adoption of a proper conformation suited to receptor binding. Additionally, antagonistic experiments using deletion mutants confirmed that not only the core domain but also the N-terminal region of GBP are required for "receptor-binding," and furthermore Phe3 is a binding determinant of the N-terminal domain.  相似文献   
135.
136.
137.
In mammalian cells, several observations indicate not only that phosphate transport probably regulates local inorganic phosphate (Pi) concentration, but also that Pi affects normal cellular metabolism, which in turn regulates apoptosis and the process of mineralization. To elucidate how extracellular Pi regulates cellular functions of pre-osteoblastic cells, we investigated the expression of type III sodium (Na)-dependent Pi transporters in rat bone marrow stromal cells and ROB-C26 pre-osteoblastic cells. The mRNA expression level of gibbon ape leukemia virus receptor (Glvr)-2 was increased by the addition of Pi in rat bone marrow stromal cells, but not in ROB-C26 or normal rat kidney (NRK) cells. In contrast, the level of Glvr-1 mRNA was not altered by the addition of extracellular Pi in these cells. The induction of Glvr-2 mRNA by Pi was inhibited in the presence of cycloheximide (CHX). Moreover, mitogen-activated protein kinase (MEK) /extracellular-signal-regulated kinase (ERK) pathway inhibitors; U0126 (1.4-diamino-2, 3-dicyano-1, 4-bis [2-amino-phenylthio] butadiene) and PD98059 (2'-Amino-3'-methoxyflavone) inhibited inducible Glvr-2 mRNA expression, but p38 MEK inhibitor SB203580 [4-(4'-fluorophenyl)-2-(4'-methyl-sulfinylphenyl)-5-(4'pyridyl) imidazole] did not inhibit the induction of Glvr-2 mRNA expression, suggesting that extracellular Pi regulates de novo protein synthesis and MEK/ERK activity in rat bone marrow stromal cells, and through these, induction of Glvr-2 mRNA. Although Pi also induced osteopontin mRNA expression in rat bone marrow stromal cells but not in ROB-C26 and NRK cells, changes in cell viability with the addition of Pi were similar in both cell types. These data indicate that extracellular Pi regulates Glvr-2 mRNA expression, provide insights into possible mechanisms whereby Pi may regulate protein phosphorylation, and suggest a potential role for the Pi transporter in rat bone marrow stromal cells.  相似文献   
138.
Cyclin-dependent kinase 5 (Cdk5) is emerging as a neuronal protein kinase involved in multiple aspects of neurotransmission in both post- and presynaptic compartments. Within the reward/motor circuitry of the basal ganglia, Cdk5 regulates dopamine neurotransmission via phosphorylation of the postsynaptic signal transduction pathway integrator, DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, M(r) 32,000). Cdk5 has also been implicated in regulating various steps in the presynaptic vesicle cycle. Here we report that Cdk5 phosphorylates tyrosine hydroxylase (TH), the key enzyme for synthesis of dopamine. Using phosphopeptide mapping, site-directed mutagenesis, and phosphorylation state-specific antibodies, the site was identified as Ser31, a previously defined extracellular signal-regulated kinases 1/2 (ERK1/2) site. The phosphorylation of Ser31 by Cdk5 versus ERK1/2 was investigated in intact mouse striatal tissue using a pharmacological approach. The results indicated that Cdk5 phosphorylates TH directly and also regulates ERK1/2-dependent phosphorylation of TH through the phosphorylation of mitogen-activated protein kinase kinase 1 (MEK1). Finally, phospho-Ser31 TH levels were increased in dopaminergic neurons of rats trained to chronically self-administer cocaine. These results demonstrate direct and indirect regulation of the phosphorylation state of a Cdk5/ERK1/2 site on TH and suggest a role for these pathways in the neuroadaptive changes associated with chronic cocaine exposure.  相似文献   
139.
Nicotine, acting on nicotinic acetylcholine receptors (nAChRs) expressed at pre-synaptic dopaminergic terminals, has been shown to stimulate the release of dopamine in the neostriatum. However, the molecular consequences of pre-synaptic nAChR activation in post-synaptic neostriatal neurons are not clearly understood. Here, we investigated the effect of nAChR activation on dopaminergic signaling in medium spiny neurons by measuring phosphorylated DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa) at Thr34 (the PKA-site) in mouse neostriatal slices. Nicotine produced dose-dependent responses, with a low concentration (1 microm) causing a sustained decrease in DARPP-32 Thr34 phosphorylation and a high concentration (100 microm) causing a transient increase in DARPP-32 Thr34 phosphorylation. Depending on the concentration of nicotine, either dopamine D2 or D1 receptor signaling was predominantly activated. Nicotine at a low concentration (1 microm) activated dopamine D2 receptor signaling in striatopallidal/indirect pathway neurons, likely by activating alpha4beta2* nAChRs at dopaminergic terminals. Nicotine at a high concentration (100 microm) activated dopamine D1 receptor signaling in striatonigral/direct pathway neurons, likely by activating (i) alpha4beta2* nAChRs at dopaminergic terminals and (ii) alpha7 nAChRs at glutamatergic terminals, which, by stimulating the release of glutamate, activated NMDA/AMPA receptors at dopaminergic terminals. The differential effects of low and high nicotine concentrations on D2- and D1-dependent signaling pathways in striatal neurons may contribute to dose-dependent actions of this drug of abuse.  相似文献   
140.
Although endothelial dysfunction deteriorates diabetic angiopathy, the mechanisms are obscure. We revealed that high glucose augmented eNOS through stimulation of eNOS mRNA in cultured BAECs. NO was decreased and O2- was increased simultaneously. NOS inhibitor, inhibited O2- release, so did NADPH oxidase inhibitor. The effects were synergistic. Both intracellular BH4 level and GTPCH1 activity were decreased by high glucose, in line with decrease of GTPCH1 mRNA. HMG-CoA reductase inhibitor, atorvastatin increased GTPCH1 mRNA and activity, and BH4 level. Conclusively, high glucose leads to eNOS dysfunction by inhibiting BH4 synthesis and atorvastatin stimulate BH4 synthesis directly, and it may work as atherogenic process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号