首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10231篇
  免费   544篇
  国内免费   8篇
  10783篇
  2022年   55篇
  2021年   110篇
  2020年   54篇
  2019年   79篇
  2018年   116篇
  2017年   109篇
  2016年   149篇
  2015年   232篇
  2014年   280篇
  2013年   607篇
  2012年   502篇
  2011年   454篇
  2010年   295篇
  2009年   294篇
  2008年   476篇
  2007年   444篇
  2006年   458篇
  2005年   412篇
  2004年   418篇
  2003年   442篇
  2002年   389篇
  2001年   413篇
  2000年   407篇
  1999年   338篇
  1998年   141篇
  1997年   108篇
  1996年   85篇
  1995年   84篇
  1994年   77篇
  1993年   85篇
  1992年   242篇
  1991年   246篇
  1990年   198篇
  1989年   179篇
  1988年   182篇
  1987年   158篇
  1986年   148篇
  1985年   146篇
  1984年   120篇
  1983年   109篇
  1982年   89篇
  1981年   58篇
  1980年   57篇
  1979年   90篇
  1978年   84篇
  1977年   61篇
  1976年   57篇
  1975年   49篇
  1973年   58篇
  1970年   49篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
111.
112.
The influences of socionomic sex ratio (SSR; adult males/adult female) and troop size upon male-male, female-female, and male-female grooming relationships were examined and compared between two wild Japanese macaque troops (Kinkazan A and Yakushima M troops) in Japan. The Yakushima M troop was smaller and had a higher-SSR than the Kinkazan A troop. Between the troops, (1) the male-male grooming frequency and number of partners were greater in the Yakushima M troop than in the Kinkazan A troop; (2) the female-female grooming frequency and number of partners were not different; and (3) the male-female grooming frequency and number of partners were not different. Based on these features, the patterns of female-female and male-female grooming relationships appear to be independent of SSR and troop size variations. In contrast, male-male grooming relationships are influenced by both factors, especially SSR. Frequent grooming interactions among males may be useful for the continued coexistence of relatively many males especially in a higher-SSR troop.  相似文献   
113.
114.
The short stem and midrib (ssm) mutants of Arabidopsis thaliana show both semi-dwarf and wavy leaf phenotypes due to defects in the elongation of the stem internodes and leaves. Moreover, these abnormalities cannot be recovered by exogenous phytohormones. ssm was originally identified as a single recessive mutant of the ecotype Columbia (Col-0), but genetic crossing experiments have revealed that this mutant phenotype is restored by another gene that is functional in the ecotype Landsberg erecta (Ler) and not in Col-0. Map-based cloning of the gene that is defective in ssm mutants has uncovered a small deletion in the sixth intron of a gene encoding a syntaxin, VAM3/SYP22, which has been implicated in vesicle transport to the vacuole. This mutation appears to cause a peptide insertion in the deduced VAM3/SYP22 polypeptide sequence due to defective splicing of the shortened sixth intron. Significantly, when compared with the wild-type Ler genome, the wild-type Col-0 genome has a single base pair deletion causing a frameshift mutation in SYP23, a gene with the highest known homology to VAM3/SYP22. These findings suggest that VAM3/SYP22 and SYP23 have overlapping functions and that the vesicle transport mediated by these syntaxins is important for shoot morphogenesis.  相似文献   
115.
Polarographic reduction-wave of vitamin K3 showed two inflexions in acetonitrile as solvent. The first step inflexion is caused by reduction of quinone to semiquinone stabilized as anion free-radical in acetonitrile, and the second by reduction of semiquinone to hydro-quinone dianion. With small addition of water, the dismutation of semiquinone is accelerated and the reduction-wave becomes only one step inflexion. The reduction-wave in acetonitrile is controlled by diffusion. The total wave-h eight is strictly proportional to the concentration of vitamin K3. The measurement is not disturbed by coexistent fatty substances.  相似文献   
116.
Accumulating evidence suggests that pathogenic TAR DNA-binding protein (TDP)-43 fragments contain a partial RNA-recognition motif domain 2 (RRM2) in amyotrophic lateral sclerosis (ALS)/frontotemporal lobar degeneration. However, the molecular basis for how this domain links to the conformation and function of TDP-43 is unclear. Previous crystal analyses have documented that the RRM2-DNA complex dimerizes under acidic and high salt conditions, mediated by the intermolecular hydrogen bonds of Glu246-Ile249 and Asp247-Asp247. The aims of this study were to investigate the roles of Glu246 and Asp247 in the molecular assembly of RRM2 under physiological conditions, and to evaluate their potential use as markers for TDP-43 misfolding due to the aberrantly exposed dimer interface. Unexpectedly, gel filtration analyses showed that, regardless of DNA interaction, the RRM2 domain remained as a stable monomer in phosphate-buffered saline. Studies using substitution mutants revealed that Glu246 and, especially, Asp247 played a crucial role in preserving the functional RRM2 monomers. Substitution to glycine at Glu246 or Asp247 induced the formation of fibrillar oligomers of RRM2 accompanied by the loss of DNA-binding affinity, which also affected the conformation and the RNA splicing function of full-length TDP-43. A novel monoclonal antibody against peptides containing Asp247 was found to react with TDP-43 inclusions of ALS patients and mislocalized cytosolic TDP-43 in cultured cells, but not with nuclear wild-type TDP-43. Our findings indicate that Glu246 and Asp247 play pivotal roles in the proper conformation and function of TDP-43. In particular, Asp247 should be studied as a molecular target with an aberrant conformation related to TDP-43 proteinopathy.  相似文献   
117.

Background and Aims

Although the advent of ultra-deep sequencing technology allows for the analysis of heretofore-undetectable minor viral mutants, a limited amount of information is currently available regarding the clinical implications of hepatitis B virus (HBV) genomic heterogeneity.

Methods

To characterize the HBV genetic heterogeneity in association with anti-viral therapy, we performed ultra-deep sequencing of full-genome HBV in the liver and serum of 19 patients with chronic viral infection, including 14 therapy-naïve and 5 nucleos(t)ide analogue(NA)-treated cases.

Results

Most genomic changes observed in viral variants were single base substitutions and were widely distributed throughout the HBV genome. Four of eight (50%) chronic therapy-naïve HBeAg-negative patients showed a relatively low prevalence of the G1896A pre-core (pre-C) mutant in the liver tissues, suggesting that other mutations were involved in their HBeAg seroconversion. Interestingly, liver tissues in 4 of 5 (80%) of the chronic NA-treated anti-HBe-positive cases had extremely low levels of the G1896A pre-C mutant (0.0%, 0.0%, 0.1%, and 1.1%), suggesting the high sensitivity of the G1896A pre-C mutant to NA. Moreover, various abundances of clones resistant to NA were common in both the liver and serum of treatment-naïve patients, and the proportion of M204VI mutants resistant to lamivudine and entecavir expanded in response to entecavir treatment in the serum of 35.7% (5/14) of patients, suggesting the putative risk of developing drug resistance to NA.

Conclusion

Our findings illustrate the strong advantage of deep sequencing on viral genome as a tool for dissecting the pathophysiology of HBV infection.  相似文献   
118.
Bacillus cereus sphingomyelinase (Bc-SMase) belongs to the Mg(2+)-dependent neutral sphingomyelinase (nSMase) which hydrolyzes sphingomyelin (SM) to produce phosphocholine and ceramide, and acts as an extracellular hemolysin. Bc-SMase has two metal ion-binding sites in a long horizontal cleft across the molecule, with one Mg(2+) in the central region of the cleft and one divalent metal ion at the side-edge of the cleft. The role of the Mg(2+) at the side-edge of the long horizontal cleft in Bc-SMase remains unresolved. The replacement of Asn-57, Glu-99, and Asp-100 located in close proximity to Mg(2+) at the side-edge with alanine resulted in a striking reduction in binding to and hydrolysis of sphingomyelin in membranes of sheep erythrocytes or SM-liposomes but that of Phe-55 did not. However, the replacement of these residues had little effect on the enzymatic activity. N57A, E99A, and D100A contained 2 mol of Mg(2+) per mol of protein, and the wild type and F55A contained 3 mol. A crystal analysis showed that N57A with Mg(2+) had no metal ion at the side-edge. These results indicate that the Mg(2+) at the side-edge of Bc-SMase plays an important role in the binding to membranes.  相似文献   
119.
The effects of hypercapnia (CO(2)) confined to either the alveolar space or the intravascular perfusate on exhaled nitric oxide (NO), perfusate NO metabolites (NOx), and pulmonary arterial pressure (Ppa) were examined during normoxia and progressive 20-min hypoxia in isolated blood- and buffer-perfused rabbit lungs. In blood-perfused lungs, when alveolar CO(2) concentration was increased from 0 to 12%, exhaled NO decreased, whereas Ppa increased. Increments of intravascular CO(2) levels increased Ppa without changes in exhaled NO. In buffer-perfused lungs, alveolar CO(2) increased Ppa with reductions in both exhaled NO from 93.8 to 61.7 (SE) nl/min (P < 0.01) and perfusate NOx from 4.8 to 1.8 nmol/min (P < 0.01). In contrast, intravascular CO(2) did not affect either exhaled NO or Ppa despite a tendency for perfusate NOx to decline. Progressive hypoxia elevated Ppa by 28% from baseline with a reduction in exhaled NO during normocapnia. Alveolar hypercapnia enhanced hypoxic Ppa response up to 50% with a further decline in exhaled NO. Hypercapnia did not alter the apparent K(m) for O(2), whereas it significantly decreased the V(max) from 66.7 to 55.6 nl/min. These results suggest that alveolar CO(2) inhibits epithelial NO synthase activity noncompetitively and that the suppressed NO production by hypercapnia augments hypoxic pulmonary vasoconstriction, resulting in improved ventilation-perfusion matching.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号