首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   12篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   9篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2005年   3篇
  2004年   9篇
  2003年   4篇
  2002年   7篇
  2001年   7篇
  2000年   7篇
  1999年   4篇
  1998年   7篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   7篇
  1990年   1篇
  1989年   3篇
  1988年   8篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1974年   4篇
  1967年   1篇
排序方式: 共有179条查询结果,搜索用时 171 毫秒
151.
The aromatic amines tyramine and β-phenylethylamine are abundant in fermented foods. Recently, a family of human trace amine-associated receptors (hTAARs) was discovered that responds to these compounds. This study examined the expression of hTAAR genes in five human organs. Among them, the stomach expressed hTAAR1 and hTAAR9. Interestingly, more hTAAR1 was expressed in the pylorus than in the other stomach regions. The CRE-SEAP reporter assay revealed that only hTAAR1 functioned as a Gs-coupled receptor in response to tyramine and β-phenylethylamine stimulation. The β-phenylethylamine-mediated hTAAR1 activity could be potentiated using 3-isobutyl-1-methylxanthine. These data suggest that tyramine and β-phenylethylamine in fermented foods act at hTAAR1 as agonists in the pylorus of stomach.  相似文献   
152.
The association between the ciliate Paramecium bursaria and symbiotic Chlorella spp. is mutually beneficial. However, this relationship is facultative mutualism because both the host and the symbiotic algae can grow by themselves. This association is easily re-established by mixing the two species together. Following algal mixing, some algae become enclosed in the digestive vacuole membrane of the paramecia to which both acidosomes and lysosomes fuse. To establish endosymbiosis, some algae acquire temporal resistance to the host lysosomal enzymes in the digestive vacuoles. We examined whether the algae influence the differentiation of the host digestive process using LysoSensor staining to evaluate the acidification of the digestive vacuoles. Furthermore, to assess lysosomal fusion with the digestive vacuole, Gomori’s staining was conducted. Acidification and lysosomal fusion occurred later in digestive vacuoles containing living algae than in those containing boiled algae or latex spheres. This phenomenon was observed when the living algae were maintained under a constant light condition. These results suggest that the algae release some unknown factor in response to light exposure, and the factor may be associated with the alteration of the host digestive process, indicating that the living algae can influence the host digestive processes during early algal infection.  相似文献   
153.
Umeo Takahama 《Phytochemistry》1985,24(7):1443-1446
Quercetin inhibited soybean lipoxygenase-1-dependent linoleic acid peroxidation. Two to three μM quercetin was required for 50% inhibition. During the inhibition, quercetin was oxidized. The oxidation was observed as an absorbance decrease at about 380 nm and an absorbance increase at about 335 nm. Inhibition of linoleic acid peroxidation by quercetin seems to be due to reduction by the reagent of the linoleic acid radical formed as an intermediate during lipoxygenation. Quercetin oxidation was suppressed by ascorbate under conditions when ascorbate did not affect lipoxygenase-dependent linoleic acid peroxidation. The results suggest that ascorbate can reduce the quercetin oxidized by the linoleic acid radical back to quercetin. Based on the results, the significance of a redox reaction between oxidized quercetin and ascorbate is discussed.  相似文献   
154.
155.
The light-induced oxygen evolution, photoreduction of 2,6-dichlorophenolindophenol (DPIP) and carotenoid photobleaching induced by carbonylcyanide m-chlorophenylhydrazone (CCCP) were investigated withspinach chloroplast fragments in the presence of H2O2. Oxygenevolution in the presence of H2O2 was not inhibited by CCCPand was only partially inhibited by 5 µM 3-(3,4-dichlorophenyl)-1,1-dimethylurea(DCMU) which completely inhibited the Hill reaction with DPIP.The degree of inhibition by DCMU was decreased by a simultaneousaddition of CCCP. Carotenoid photobleaching in the presenceof CCCP was stimulated by H2O2. The CCCP-induced carotenoidphotobleaching was completely inhibited by DCMU. However, itwas only partially inhibited by DCMU in the presence of H2O2.These data indicate that H2O2 donates electrons at a site betweenthe CCCP-sensitive site and the reaction center of photosystemII and is reduced at a site between the DCMU-blocked site andthe reaction center of photosystem II. 1Present address: Department of Biology, Kyushu Dental College,Kitakyushu 803, Japan. (Received June 20, 1974; )  相似文献   
156.
The aqueous phase of the cell walls inside leaves (apoplast)of spinach contained ascorbate (AA) and dehydroascorbate (DHA).Ratios of AA to AA plus DHA were between 0.4 and 0.9, whereasthose inside leaves were higher than 0.9. The amounts of AAplus DHA in the apoplast were between 15 and 60 nmol (g fr wt)–1of leaves. If the volume of the apoplast is about 10% of totalvolume of leaf cells, the concentrations of AA plus DHA werebetween 0.15 and 0.6 mM. Apoplastic AA was oxidized by hydrogenperoxide, and the oxidation was stimulated by phenolics suchas caffeic acid or ferulic acid by a factor of 10, suggestingthe presence in apoplast of peroxidases which are differentfrom AA peroxidase. The stimulation was due to the oxidationof AA by the primary oxidation products of phenolics with apoplasticperoxidase. Based on the data, the physiological significanceof the occurrence of AA in the apoplast is discussed in relationto the regulation of the apoplastic oxidation of phenolics. (Received January 8, 1992; Accepted February 28, 1992)  相似文献   
157.
158.
Effects of artificial electron donor and acceptors, electrontransfer mediators, and superoxide dismutase on lipid peroxidationin illuminated chloroplast fragments were studied. An indicator of lipid peroxidation, malondialdehyde (MDA) formation,was stimulated by 3-(3,4-dichlorophenyl)-l,l-dimethylurea (DCMU).The DCMU stimulated MDA formation was inhibited about 90% byreduced 2,6-dichloroindophenol (DCIP). In photosystem I-enrichedparticles, MDA formation was larger than that in normal chloroplastfragments on the chlorophyll basis. Benzyl viologen and ferredoxinstimulated DMA formation. Superoxide dismutase inhibited MDAformation strongly in the presence of benzyl viologen and weaklyin its absence; the enzyme sometimes stimulated MDA formationin the presence of ferredoxin. Carbonylcyanide m-chlorophenylhydrazone(CCCP) stimulated MDA formation and maximal stimulation wasattained at about 20 µM CCCP.Phenazine methosulfate, DCIPand benzoquinone inhibited MDA formation in the presence andabsence of CCCP. From the above results, we confirmed our previous conclusionthat most of the singlet molecular oxygen formed in illuminatedchloroplasts is generated by electron transfer from O2to oxidized electron transfer components located on the oxidizingsides of photosystems I and II. (Received September 3, 1975; )  相似文献   
159.
The effects of kaempferol on carotenoid photobleaching wereexamined using chloroplasts poisoned by carbonylcyanide m-chlorophenylhydrazone(CCCP). Kaempferol suppressed carotenoid photobleaching withoutaffecting electron transfer reactions. Half-maximal suppressionwas observed at about 10 µM. Kaempferol was photooxidizedby CCCP-poisoned chloroplasts, as observed by its bleachingat 380 nm. Ascorbate inhibited the oxidation of kaempferol.Under anaerobic conditions, kaempferol did not affect the photobleachingof carotenoid. Other fiavonols, quercetin and its glycosides,also suppressed the carotenoid photobleaching. The results suggestthat flavonols act as antioxidants in illuminated chloroplastsunder aerobic conditions. (Received February 22, 1982; Accepted May 14, 1982)  相似文献   
160.
Horseradish peroxidase (HRP)-dependent oxidation of 3, 4-dihydroxyphenylalanine (dopa) was studied to elucidate the mechanism of its oxidation. The oxidation of dopa was enhanced by hydroxycinnamic acid esters and dopa supressed HRP-dependent oxidation of the esters. These results indicate that phenoxyl radicals of hydroxycinnamic acid esters that are formed at first, can oxidize dopa. Among hydroxycinnamic acid esters used, affinity of the phenoxyl radicals for dopa was in order 4-coumaric>caffeic>ferulic acid ester radicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号