首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1527篇
  免费   102篇
  2022年   12篇
  2021年   21篇
  2020年   9篇
  2019年   8篇
  2018年   28篇
  2017年   20篇
  2016年   36篇
  2015年   52篇
  2014年   61篇
  2013年   85篇
  2012年   125篇
  2011年   97篇
  2010年   49篇
  2009年   53篇
  2008年   94篇
  2007年   99篇
  2006年   91篇
  2005年   84篇
  2004年   86篇
  2003年   83篇
  2002年   76篇
  2001年   17篇
  2000年   23篇
  1999年   22篇
  1998年   8篇
  1997年   7篇
  1994年   9篇
  1993年   16篇
  1992年   14篇
  1991年   7篇
  1990年   11篇
  1989年   14篇
  1988年   8篇
  1987年   13篇
  1986年   13篇
  1985年   22篇
  1984年   8篇
  1983年   11篇
  1981年   10篇
  1980年   8篇
  1979年   7篇
  1977年   9篇
  1976年   10篇
  1975年   7篇
  1974年   11篇
  1973年   10篇
  1970年   9篇
  1969年   6篇
  1968年   7篇
  1966年   7篇
排序方式: 共有1629条查询结果,搜索用时 31 毫秒
111.
The orotidine-5′-phosphate decarboxylase gene of Saccharomyces exiguus Yp74L-3 was cloned as a DNA fragment complementing a ura4 mutation of this yeast. The coding region of the gene is 807 bp in length, and represents 68.7% similarity to the corresponding gene of S. cerevisiae (URA3). The cloned URA4 gene was shown to be located on the 790-kbp Chromosome (chr) VIII of S. exiguus Yp74L-3. The neighbor-joining phylogenetic tree based on the orotidine-5′-phosphate decarboxylase coding sequences indicates that S. exiguus Yp74L-3 is closely related to Kluyveromyces yeasts, as well as to a S. cerevisiae laboratory strain. Received: 4 February 2000 / Accepted: 3 July 2000  相似文献   
112.
Some parasympathetic ganglionic cells are located in the epicardial fat pad between the medial superior vena cava and the aortic root (SVC-Ao fat pad) of the dog. We investigated whether the ganglionic cells in the SVC-Ao fat pad control the right atrial contractile force, sinus cycle length (SCL), and atrioventricular (AV) conduction in the autonomically decentralized heart of the anesthetized dog. Stimulation of both sides of the cervical vagal complexes (CVS) decreased right atrial contractile force, increased SCL, and prolonged AV interval. Stimulation of the rate-related parasympathetic nerves to the sinoatrial (SA) node (SAPS) increased SCL and decreased atrial contractile force. Stimulation of the AV conduction-related parasympathetic nerves to the AV node prolonged AV interval. Trimethaphan, a ganglionic nicotinic receptor blocker, injected into the SVC-Ao fat pad attenuated the negative inotropic, chronotropic, and dromotropic responses to CVS by 33 approximately 37%. On the other hand, lidocaine, a sodium channel blocker, injected into the SVC-Ao fat pad almost totally inhibited the inotropic and chronotropic responses to CVS and partly inhibited the dromotropic one. Lidocaine or trimethaphan injected into the SAPS locus abolished the inotropic responses to SAPS, but it partly attenuated those to CVS, although these treatments abolished the chronotropic responses to SAPS or CVS. These results suggest that parasympathetic ganglionic cells in the SVC-Ao fat pad, differing from those in SA and AV fat pads, nonselectively control the atrial contractile force, SCL, and AV conduction partially in the dog heart.  相似文献   
113.
114.
Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure.  相似文献   
115.
To elucidate the effects of endurance training on circulating irisin levels in young and middle-aged/older adults, and to determine the association between endurance training-induced alteration of irisin and reduction in body fat. Twenty-five healthy young (age 21 ± 1 years; 16 men, 9 women) and 28 healthy middle-aged/older adults (age 67 ± 8 years; 12 men, 16 women) participated in the study. Each age cohort was divided into two groups: the endurance-training group (14 young, 14 middle-aged/older) and the control group. Subjects in the training groups completed an 8-week endurance-training program (cycling at 60-70% peak oxygen uptake [V˙O2peak] for 45 min, 3 days/week). Before and after the intervention, we evaluated serum irisin level, V˙O2peak, and body composition. The increase in V˙O2peak in the young and middle-aged/older training groups after the intervention period was significantly greater than those in the young and middle-aged/older control groups (P < 0.05). Serum irisin level was significantly increased in the middle-aged/older training group after the intervention period (P < 0.01), but not in the young training group. Furthermore, in the middle-aged/older training group, the endurance training-induced reduction in visceral adipose tissue area was negatively correlated with the change in serum irisin level (r = −0.54, P < 0.05). These results suggest a possible role for secreted irisin in the exercise-induced alteration of abdominal visceral fat in middle-aged and older adults.  相似文献   
116.

Objective

Presepsin is highlighted as a diagnostic and prognostic marker of sepsis. Little information is available regarding the accurate association between presepsin levels and the degree of kidney function. We analyzed presepsin levels in patients with a glomerular filtration rate (GFR) in the categories G1 to G5, evaluated via inulin renal clearance test, and receiving hemodialysis (HD).

Methods

Patients who were not receiving HD were included if they had undergone inulin renal clearance measurements for the accurate measurement of GFR (measured GFR), and patients who were receiving hemodialysis (HD) were included if they had anuria. Exclusion criteria were infection, cancer, liver disease, autoimmune disorders, or steroid or immunosuppressant use. GFR category was defined as follows; G1: GFR ≥ 90 ml/min/1.73m2, G2: GFR = 60 to 90 ml/min/1.73m2, G3: GFR = 30 to 60 ml/min/1.73m2, G4: GFR = 15 to 30 ml/min/1.73m2, G5: GFR ≤ 15 ml/min/1.73m2.

Results

Seventy-one patients were included. The median (IQR) presepsin values of patients in each GFR category were as follows: G1 + G2: 69.8 (60.8–85.9) pg/ml; G3: 107.0 (68.7–150.0) pg/ml; G4: 171.0 (117.0–200.0) pg/ml; G5: 251.0 (213.0–297.5) pg/ml; and HD: 1160.0 (1070.0–1400.0) pg/ml. The log-transformed presepsin values, excluding patients receiving HD, inversely correlated with the measured GFR (Pearson’s correlation coefficient = -0.687, P < 0.001). The multivariate analysis revealed that measured GFR and hemoglobin levels significantly correlated with elevated presepsin levels.

Conclusion

Presepsin levels were markedly high in patients receiving HD, similar to values seen in patients with severe sepsis or septic shock. In patients who were not receiving HD, presepsin levels increased as GFR decreased. Thus, the evaluation of presepsin levels in patients with chronic kidney disease requires further consideration, and a different cutoff value is needed for diagnosing sepsis in such patients.  相似文献   
117.

Background

Assessment of the clinical course of sarcoidosis requires long-term observation. However, the appropriate period of follow-up for sarcoidosis remains unclear, especially in patients without indication of corticosteroid therapy at the time of diagnosis.

Objective

This study aimed to clarify the cumulative incidence and identify risk factors for disease progression in corticosteroid-naïve sarcoidosis patients.

Methods

The clinical courses of 150 Japanese patients with sarcoidosis, who were followed for more than 2 years and had no indication for corticosteroid therapy at diagnosis, were retrospectively reviewed. Disease progression was defined as worsening of pulmonary sarcoidosis, development of new organ involvement, or extrapulmonary organ damage. The cumulative incidence of progression was estimated by generating a cumulative incidence curve with the Fine and Gray method.

Results

The median follow-up duration was 7.7 years (interquartile range, 4.7–13.6 years). Thirty-two (21%) patients experienced disease progression. New organ involvement appeared in 16 patients (11%). The 6-month, and 1-, 5-, 10-, and 15-year cumulative incidence of progression was 2%, 5%, 15%, 28%, and 31%, respectively. The number of organs involved at diagnosis was an independent predictor for progression with a multifactorial adjusted hazard ratio of 1.71 (95% confidence interval, 1.11–2.62). The optimal cut-off of the number of organs involved at diagnosis to identify future progression was three.

Conclusions

In corticosteroid-naïve sarcoidosis patients, the risks of disease progression are comparable from 0–5 years and 5–10 years after diagnosis. The number of organs involved at diagnosis is a useful predictor for progression of sarcoidosis.  相似文献   
118.
TAE226, a bis-anilino pyrimidine compound, has been developed as an inhibitor of focal adhesion kinase (FAK) and insulin-like growth factor-I receptor (IGF-IR). In this study, we investigated the effect of TAE226 on non-small-cell lung cancer (NSCLC), especially focusing on the EGFR mutational status. TAE226 was more effective against cells with mutant EGFR, including the T790M mutant, than against cells with wild-type one. TAE226 preferentially inhibited phospho-EGFR and its downstream signaling mediators in the cells with mutant EGFR than in those with wild-type one. Phosphorylation of FAK and IGF-IR was not inhibited at the concentration at which the proliferation of EGFR-mutant cells was inhibited. Results of the in vitro binding assay indicated significant differences in the affinity for TAE226 between the wild-type and L858R (or delE746_A750) mutant, and the reduced affinity of ATP to the L858R (or delE746_A750) mutant resulted in good responsiveness of the L858R (or delE746_A750) mutant cells to TAE226. Of interest, the L858R/T790M or delE746_A750/T790M mutant enhanced the binding affinity for TAE226 compared with the L858R or delE746_A750 mutant, resulting in the effectiveness of TAE226 against T790M mutant cells despite the T790M mutation restoring the ATP affinity for the mutant EGFR close to that for the wild-type. TAE226 also showed higher affinity of about 15-fold for the L858R/T790M mutant than for the wild-type one by kinetic interaction analysis. The anti-tumor effect against EGFR-mutant tumors including T790M mutation was confirmed in mouse models without any significant toxicity. In summary, we showed that TAE226 inhibited the activation of mutant EGFR and exhibited anti-proliferative activity against NSCLCs carrying EGFR mutations, including T790M mutation.  相似文献   
119.
The photoreceptors for chloroplast photorelocation movement have been known, but the signal(s) raised by photoreceptors remains unknown. To know the properties of the signal(s) for chloroplast accumulation movement, we examined the speed of signal transferred from light-irradiated area to chloroplasts in gametophytes of Adiantum capillus-veneris. When dark-adapted gametophyte cells were irradiated with a microbeam of various light intensities of red or blue light for 1 min or continuously, the chloroplasts started to move towards the irradiated area. The speed of signal transfer was calculated from the relationship between the timing of start moving and the distance of chloroplasts from the microbeam and was found to be constant at any light conditions. In prothallial cells, the speed was about 1.0 µm min−1 and in protonemal cells about 0.7 µm min−1 towards base and about 2.3 µm min−1 towards the apex. We confirmed the speed of signal transfer in Arabidopsis thaliana mesophyll cells under continuous irradiation of blue light, as was about 0.8 µm min−1. Possible candidates of the signal are discussed depending on the speed of signal transfer.Key words: Adiantum capillus-veneris, Arabidopsis thaliana, blue light, chloroplast movement, microbeam, red light, signalOrganelle movement is essential for plant growth and development and tightly regulated by environmental conditions.1 It is well known that light regulates chloroplast movement in various plant species. Chloroplast movement can be separated into three categories, (1) photoperception by photoreceptors, (2) signal transduction from photoreceptor to chloroplasts and (3) movement of chloroplasts and has been analyzed from a physiological point of view.2 We recently identified the photoreceptors in Arabidopsis thaliana, fern Adiantum capillus-veneris, and moss Physcomitrella patens. In A. thaliana, phototropin 2 (phot2) mediates the avoidance movement,3,4 whereas both phototropin 1 (phot1) and phot2 mediate the accumulation response.5 A chimeric photoreceptor neochrome 1 (neo1)6 was identified as a red/far-red and blue light receptor that mediates red as well as blue light-induced chloroplast movement in A. capillusveneris.7 Interestingly, neo1 mediated red and blue light-induced nuclear movement and negative phototropic response of A. capillus-veneris rhizoid cells.8,9 On the mechanism of chloroplast movement, we also found a novel structure of actin filaments that appeared between chloroplast and the plasma membrane at the front side of moving chloroplast.10 Recent studies using the technique of microbeam irradiation have revealed that chloroplasts do not have a polarity for light-induced accumulation movement and can move freely in any direction both in A. capillus-veneris prothallial cells and in A. thaliana mesophyll cells.11 However, the signal that may be released from photoreceptors and transferred to chloroplasts remains unknown.To understand the properties of the signal for the chloroplast accumulation response, we examined the speed of signal transfer in dark-adapted A. capillus-veneris gametophyte cells and A. thaliana mesophyll cells by partial cell irradiation with a red and/or blue microbeam of various light intensities for 1 min and the following continuous irradiation, respectively.12As shown in Figure 1, the relation between the distance of chloroplasts from the microbeam and the timing when each chloroplast started moving toward the microbeam irradiated area (shown as black dots in Fig. 1) was obtained and plotted. The lag time between the onset of microbeam irradiation and the timing of start moving of chloroplasts is the time period needed for a signal to reach each chloroplast. To obtain more accurate data many chloroplasts at various positions were used. The slope of the approximate line indicates the average speed of the signal transfer. Shown with a protonemal cell at the left side of this figure is an instance where the speed of signal transfer from basal-to-apical (acropetal) direction is obtained.Open in a separate windowFigure 1How to calculate the speed of signal transfer in the basal cell of two-celled protonema of Adiantum capillus-veneris. The relationship between the distance of chloroplast position from the edge of the microbeam to the center of each chloroplast as shown in left side of figure and the timing of chloroplast movement initiated shown as the black dots was obtained. Inclination of the approximate lines connecting dots indicates the speeds of the signal transfer.In protonemal cells, which are tip-growing linear cells, the average speed of signal transfer was about 2.3 µm min−1 from basal-to-apical (acropetal) and about 0.7 µm min−1 from apical-to-basal (basipetal) directions. These values were almost constant irrespective of light intensity, wavelength, irradiation period, and the region of the cell irradiated.12 The difference of speed between basipetal and acropetal directions may be depending on cell polarity. The signal transfer in prothallial cells of A. capillus-veneris and mesophyll cells of A. thaliana was about 1.0 µm min−1 to any direction, probably because they may not have a polarity comparing to protonemal cells or have a weak polarity if any. Thus, the speed of signal transfer must be conserved in most land plants,12 if not influenced by strong polarity.
R1W m−2R1W m−2B1W m−2R0.1W m−2R10W m−2B10W m−2
1 mincountinuouscountinuouscountinuouscountinuouscountinuous
Protonemal cell (towards apical region)2.322.372.282.412.39
Protonemal cell (towards basal region)0.580.730.800.740.86
Prothallial cell1.130.921.101.080.95
Arabidopsis thaliana0.70
Open in a separate windowThe speeds of signal transfer under different light intensities and wave length in Adiantum capillus-veneris gametophyte cells and Arabidopsis thaliana mesophyll cells are summarized. When dark-adapted cells were irradiated with various light intensities (red light: 10, 1, 0.1 W m−2) of a microbeam of red or blue light for 1 min or continuously, the chloroplasts moved towards the irradiated area. The speed of signal transfer was measured from the relationship between the timing of onset of moving and the distance of chloroplalsts from the microbeam irradiated area.Calcium ions have been proposed as one of the candidates of the signal. Calcium is reported to be necessary for chloroplast movement in some plants.13,14 Chloroplast movement under polarized light could not be induced in the existence of EGTA in protonemal cells of A. capillus-veneris, although chloroplasts show slight movement in random direction.13 In Lemna trisulca, chloroplast movement correlates with an increase of cytoplasmic calcium levels and is inhibited by antagonists of calcium homeostasis.14 The speed of intracellular transfer of calcium ions in plant cells was measured only in moss Physcomitrella patens by microinjection of a calcium indicator into protonemal cells.15 The speed of calcium waves in the cytoplasm of protonemal cell was about 3.4 µm sec−1. The speed of substance transfer as signals is not known in plant cells except for the above instance, as far as we know, but in animal cells various experimental data has been accumulated.1621The transfer speed of calcium waves visualizing cytoplasmic free calcium by microinjection of aequorin was about 8 µm sec−1 in Xenopus eggs.16 Calcium ion expands as a spherical wave and the wave speed in plane is 50 µm sec−1 in rat cardiac myocytes when measured by loading a membrane-permeable indicator of calcium into the cell. The maximum velocity was 112 µm sec−1.17 Calcium waves could also be observed in the SR-free single isolated rabbit cardiac myofibrils with a propagation velocity of 15.5 µm sec−1.18 The propagation velocity of the calcium wave was about 65–100 µm sec−1 by calciuminduced calcium release (CICR) in pig heart muscle cells.1921 Comparing these values to our data in A. capillus-veneris, the speed of signal transfer in chloroplast movement in fern gametophytes was 100–200 times slower than those measured for calcium ion transfers in animal cells, suggesting that the calcium might not be the signal involved in chloroplast movement.Intracellular transport is depended on the cytoskeleton systems in many cases. So the speed of movement of the cytoskeleton itself has been examined. When motor-proteins (such as 22s dynein, 14s dynein, kinesin) were anchored on a slide glass microtubules overlaid moved with a speed of about 4.52, 4.29, 0.422 µm sec−1, respectively. In similar ways, actin filaments placed over myosin-coated glass moved at about 5.21 µm sec-1.22 On the other hand, the motor domain of the Centromere Binding Factor (CBF) protein complex moves at 4.04 µm min−1 on microtubules.23 In A. capillus-veneris protonemal cells, the speed of cytoplasmic streaming depending on the actomyosin system was calculated from the speed of oil drop movement.24 The speed was dependent upon the position of long protonemal cells and was about 2 µm min−1 in the apical region and gradually increased to 10 µm min−1 in the basal region. In comparison to the data cited here, the speed of signal transfer involved in chloroplast accumulation was 30–120 times slower than the speed of the actomyosin system or the microtubule-kinesin/dynein system, but it is similar to the moving speed of a protein complex on a microtubule23 and oil droplets in a protonemal cell.24Polymerization rates of cytoskeletal proteins have been measured using in vitro systems. For instance, the plus end of microtubules from bovine brains grew at 1.04–1.88 µm min−1.25,26 Polymerization rate of actin filaments from rabbit muscle was about 0.13–0.49 µm min−1 and depended on the G-actin concentration.27 Live BHK21 fibroblasts, mouse melanoma cells and Dictyostelium amoebae expressing GFP-actin fusion proteins move on glass by using three-dimensional F-actin bands. These structures propagate throughout the cytoplasm at rates ranging between 2–5 µm min−1 in each cell type and produce lamellipodia or pseudopodia at the cell boundary.28 The extending speed of these cytoskeletons is roughly equal to the speed of signal transfer for the chloroplast accumulation response. We therefore aim to measure the speed of extension of these filaments when a method of gene transformation has been established for A. capillus-veneris.  相似文献   
120.
Landscape genetic structure of <Emphasis Type="Italic">Betula maximowicziana</Emphasis> in the Chichibu mountain range,central Japan     
Yoshiaki Tsuda  Haruo Sawada  Takafumi Ohsawa  Katsuhiro Nakao  Hiroki Nishikawa  Yuji Ide 《Tree Genetics & Genomes》2010,6(3):377-387
We evaluated the genetic structure of 16 Betula maximowicziana populations in the Chichibu mountain range, central Japan, located within a 25-km radius; all but two populations were at altitudes of 1,100–1,400 m. The results indicate the effects of geographic topology on the landscape genetic structure of the populations and should facilitate the development of local-scale strategies to conserve and manage them. Analyses involving 11 nuclear simple sequence repeat loci showed that most populations had similar intrapopulation genetic diversity parameters. Population differentiation (F ST = 0.021, GST = 0.033) parameters for the populations examined were low but were relatively high compared to those obtained in a previous study covering populations in a much larger area with a radius of approximately 1,000 km (F ST = 0.062, GST = 0.102). Three populations (Iriyama, Kanayamasawa, and Nishizawa) were differentiated from the other populations by Monmonier’s and spatial analysis of molecular variance algorithms or by STRUCTURE analysis. Since a high mountain ridge (nearly 2,000 m) separates the Kanayamasawa and Nishizawa populations from the other 14 populations and the Kanayamasawa and Nishizawa populations are themselves separated by another mountain ridge, the genetic structure appears to be partly due to mountain ridges acting as genetic barriers and restricting gene flow. However, the Iriyama population is genetically different but not separated by any clear geographic barrier. These results show that the landscape genetic structure is complex in the mountain range and we need to pay attention, within landscape genetic studies and conservation programs, to geographic barriers and local population differentiation.  相似文献   
[首页] « 上一页 [7] [8] [9] [10] [11] 12 [13] [14] [15] [16] [17] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号