全文获取类型
收费全文 | 1689篇 |
免费 | 84篇 |
专业分类
1773篇 |
出版年
2023年 | 3篇 |
2022年 | 14篇 |
2021年 | 26篇 |
2020年 | 10篇 |
2019年 | 14篇 |
2018年 | 35篇 |
2017年 | 30篇 |
2016年 | 44篇 |
2015年 | 60篇 |
2014年 | 84篇 |
2013年 | 116篇 |
2012年 | 146篇 |
2011年 | 123篇 |
2010年 | 52篇 |
2009年 | 71篇 |
2008年 | 125篇 |
2007年 | 110篇 |
2006年 | 111篇 |
2005年 | 91篇 |
2004年 | 110篇 |
2003年 | 103篇 |
2002年 | 105篇 |
2001年 | 14篇 |
2000年 | 11篇 |
1999年 | 15篇 |
1998年 | 7篇 |
1997年 | 10篇 |
1996年 | 5篇 |
1995年 | 9篇 |
1994年 | 10篇 |
1993年 | 12篇 |
1992年 | 7篇 |
1991年 | 4篇 |
1990年 | 9篇 |
1989年 | 7篇 |
1988年 | 5篇 |
1987年 | 7篇 |
1986年 | 5篇 |
1985年 | 9篇 |
1984年 | 7篇 |
1983年 | 7篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 4篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 3篇 |
1975年 | 3篇 |
1974年 | 3篇 |
1966年 | 1篇 |
排序方式: 共有1773条查询结果,搜索用时 31 毫秒
31.
BACKGROUND: It has been thought that intramuscular ADP and phosphocreatine (PCr) concentrations are important regulators of mitochondorial respiration. There is a threshold work rate or metabolic rate for cellular acidosis, and the decrease in muscle PCr is accelerated with drop in pH during incremental exercise. We tested the hypothesis that increase in muscle oxygen consumption (o2mus) is accelerated with rapid decrease in PCr (concomitant increase in ADP) in muscles with drop in pH occurs during incremental plantar flexion exercise. METHODS: Five male subjects performed a repetitive intermittent isometric plantar flexion exercise (6-s contraction/4-s relaxation). Exercise intensity was raised every 1 min by 10% maximal voluntary contraction (MVC), starting at 10% MVC until exhaustion. The measurement site was at the medial head of the gastrocnemius muscle. Changes in muscle PCr, inorganic phosphate (Pi), ADP, and pH were measured by 31P-magnetic resonance spectroscopy. o2mus was determined from the rate of decrease in oxygenated hemoglobin and/or myoglobin using near-infrared continuous wave spectroscopy under transient arterial occlusion. Electromyogram (EMG) was also recorded. Pulmonary oxygen uptake (o2pul ) was measured by the breath-by-breath gas analysis. RESULTS: EMG amplitude increased as exercise intensity progressed. In contrast, muscle PCr, ADP, o2mus, and o2pul did not change appreciably below 40% MVC, whereas above 40% MVC muscle PCr decreased, and ADP, o2mus, and o2pul increased as exercise intensity progressed, and above 70% MVC, changes in muscle PCr, ADP, o2mus, and o2pul accelerated with the decrease in muscle pH (~6.78). The kinetics of muscle PCr, ADP, o2mus, and o2pul were similar, and there was a close correlation between each pair of parameters (r = 0.969~0.983, p < 0.001). CONCLUSION: With decrease in pH muscle oxidative metabolism accelerated and changes in intramuscular PCr and ADP accelerated during incremental intermittent isometric plantar flexion exercise. These results suggest that rapid changes in muscle PCr and/or ADP with mild acidosis stimulate accelerative muscle oxidative metabolism. 相似文献
32.
Elongation of pollen tubes in pistils after self-pollination of Lilium longiflorum cv. Hinomoto exhibiting strong gametophytic self-incompatibility was promoted by cAMP and also promoted by some metabolic modulators, namely, activators (forskolin and cholera toxin) of adenylate cyclase and inhibitors (3-isobutyl-1-methylxanthine and pertussis) of cyclic nucleotide phosphodiesterase. Moreover, the elongation was promoted by acetylcholine (ACh) and other choline derivatives, such as acetylthiocholine, L-α-phosphatidylcholine and chlorocholinechloride [CCC; (2-chloroethyl) trimethyl ammonium chloride]. A potent inhibitor (neostigmine) of acetylcholinesterase (AChE) as well as acetylcholine also promoted the elongation. cAMP enhanced choline acetyltransferase (ChAT) activity and suppressed AChE activity in the pistils, suggesting that the results are closely correlated with self-incompatibility in L. longiflorum. In short, it came to light that cAMP modulates ChAT (acetylcholine-forming enzyme) and AChE (acetylchoine-decomposing enzyme) activities to enhance the level of ACh in the pistils of L. logiflorum after self-incompatible pollination. These results indicate that the self-incompatibility on self-pollination is caused by low levels of ACh and/or cAMP.Key Words: pollen tubes, self-incompatibility, Lilium longiflorum, cAMP, acetylcholie, AChE, ChATCyclic AMP (cAMP) is an essential signaling molecule in both prokaryotes and eukaryotes.1 The existence of cAMP in higher plants was questioned by some reviewers2–4 in the mid 1970''s, so that many workers were discouraged from studying roles in plant biology. However, its presence was confirmed by mass spectrometry5 and infrared spectrometry6 in the early 1980''s and increasing evidence7–12 now suggests that cAMP makes important contributions in plant cells, as in animals.Lily (Lilium longiflorum) exhibits strong gametophytic self-incompatibility.13,14 Thus, elongation of pollen tubes in the pistil after self-incompatible pollination in L. longiflorum cv. Hinomoto stops halfway, in contrast to the case after cross-compatible pollination (cross with cv. Georgia).14 This self-incompatibility appears to be associated with the stress and self-incompatible pollination on stigmas of lilies results in activation and/or induction of enzymes such as NADH- and NADPH-dependent oxidases, xanthine oxidase, superoxide dismutase (SOD), catalase and ascorbate peroxidase in the pistils.15 The activities of NADH- and NADPH-dependent oxidases (O2−-forming enzymes), however, are known to be suppressed by cAMP16 and increase in the level of cAMP in guinea pig neutrophils results in their decreased expression.17 The level of O2− reactions with SOD is also decreased by cAMP.18 In the case of the lily, inhibition of NADH- and NADPH-dependent oxidases by cAMP was found to be noncompetitive with NAD(P)H.16 We hypothesized that decrease in active oxygen species such as O2− and suppression of stress enzyme activities in self-pollinated pistils of lily by cAMP might cause elongation of pollen tubes after self-pollination and this proved to be the case. Namely, elongation of pollen tubes after self-incompatible pollination in lily was promoted by exogenous cAMP at a concentration as low as 10 nM, a conceivable physiological level.13 Moreover, similar elongation could be achieved with adenylate cyclase activators [forskolin(FK) and cholera toxin] and cAMP phosphodiesterase inhibitors [3-isobutyl-1-methylxanthine (IBMX) and pertussis toxin].14,19 These phenomena led us to examine the involvement of endogenous cAMP in pistils after self-incompatible or cross-compatible pollination. As expected, the level of endogenous cAMP in pistils after self-pollination was approximately one half of that after cross-pollination. Furthermore, this was associated with a concomitant decrease in adenylate cyclase and increase in cAMP phosphodiesterase.19Many researchers in the field of plant biology have been unsuccessful in attempts to estimate the quantity of cAMP and to detect activities of adenylate cyclase and cAMP phosphodiesterase. On major difficulty is the presence of proteases and we have overcome this problem by using protease inhibitors, such as aprotinin and leupeptin.19In 1947, acetylcholine (ACh) of higher plants was first reported in a nettle (Urtica urens) found in the Himalaya mountain range.20 In 1983, its existence in plants was confirmed by mass spectrometry of preparations from Vigna seedlings.21 In our preliminary studies, CCC (chlorocholinechloride), a plant growth retardant (specifically an anti-gibberellin), enhanced the elongation of the pollen tubes in pistils after self-incompatible pollination in lilies. This led us to investigate whether other choline derivatives cause similar effects and positive findings were obtained with ACh, acetylthiocholine and L-α-phosphatidlylcholine.22 Moreover, the elongation was also promoted by neostigmine, an inhibitor of acetylcholine esterase (AChE) activity. In line with these results, choline acetyltransferase (ChAT) demonstrated low and AChE high activity in pistils after self-incompatible pollination.The positive influence of cAMP14,19 and ACh22 in pistils of L. longiflorum after self-incompatible pollination encouraged us to examine the involvement of these two molecules in regulation of pollen tube elongation of lily after self-incompatible and cross-compatible pollination. As a result, it was revealed that cAMP promotes ChAT and suppresses AChE activity in pistils after both self- and cross-pollination. In other words, the self-incompatibilty in pistils of L. longiflorum appears to be due to levels of ACh and/or cAMP below certain threshold values.Hitherto, these substances have not been recognized to play important roles in the metabolic systems of higher plants. However, given their conservation through evolution, it is natural that such central metabolic substances make essential contributions, regardless of the organism. We have succeeded in establishing physiological functions of cAMP and ACh in pistils of lily14,19,22 and this points to use of plant reproductive organs such as research materials. The exact responsibilities of the two molecules may depend on differences in tissues or organs of plants and further molecular biological studies in this area are clearly warranted. This issue is currently being investigated. 相似文献
33.
Suzuki N Shiota T Watanabe F Haga N Murashi T Ohara T Matsuo K Oomori N Yari H Dohi K Inoue M Iguchi M Sentou J Wada T 《Bioorganic & medicinal chemistry letters》2011,21(6):1601-1606
A structure-activity relationship study of 4-anilinopyrimidines for dual EGFR/Her-2 inhibitor has resulted in the identification of 4-anilino-5-alkenyl or 5-alkynyl-6-methylpyrimidine derivatives that have exhibited effective inhibitory activity against both enzymes. The presence of 5-alkenyl or 5-alkynyl moiety bearing terminal hydrophilic group played important role for inhibition of these enzymes. Selected compounds in the series demonstrated some activity against Her-2 dependent cell line (BT474). 相似文献
34.
Kanda S Harita Y Shibagaki Y Sekine T Igarashi T Inoue T Hattori S 《Molecular biology of the cell》2011,22(11):1824-1835
Transient receptor potential canonicals (TRPCs) play important roles in the regulation of intracellular calcium concentration. Mutations in the TRPC6 gene are found in patients with focal segmental glomerulosclerosis (FSGS), a proteinuric disease characterized by dysregulated function of renal glomerular epithelial cells (podocytes). There is as yet no clear picture for the activation mechanism of TRPC6 at the molecular basis, however, and the association between its channel activity and pathogenesis remains unclear. We demonstrate here that tyrosine phosphorylation of TRPC6 induces a complex formation with phospholipase C (PLC)-γ1, which is prerequisite for TRPC6 surface expression. Furthermore, nephrin, an adhesion protein between the foot processes of podocytes, binds to phosphorylated TRPC6 via its cytoplasmic domain, competitively inhibiting TRPC6-PLC-γ1 complex formation, TRPC6 surface localization, and TRPC6 activation. Importantly, FSGS-associated mutations render the mutated TRPC6s insensitive to nephrin suppression, thereby promoting their surface expression and channel activation. These results delineate the mechanism of TRPC6 activation regulated by tyrosine phosphorylation, and imply the cell type-specific regulation, which correlates the FSGS mutations with deregulated TRPC6 channel activity. 相似文献
35.
Akiba S Kumazawa S Yamaguchi H Hontani N Matsumoto T Ikeda T Oka M Sato T 《Biochimica et biophysica acta》2006,1763(8):797-804
Increases in matrix metalloproteinases (MMPs) at atherosclerotic lesions are involved in the migration of smooth muscle cells (SMCs) into the intima and to the rupture of plaques, being implicated in the progression of atherosclerosis. The present study examined the mechanisms underlying the production of MMP-1, interstitial collagenase-1, induced by oxidized low-density lipoprotein (oxLDL) and 4-hydroxynonenal (4-HNE), factors proposed to play a pivotal role in atherogenesis, in human coronary SMCs. oxLDL promoted the production of MMP-1 with the preceding phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Immunoprecipitation of platelet-derived growth factor receptor beta (PDGFR-beta) revealed that oxLDL induced tyrosine phosphorylation of the receptor. Inhibition of the activation of PDGFR-beta and ERK1/2 resulted in a suppression of the production of MMP-1. Consistently, 4-HNE also elicited the production of MMP-1 with the preceding phosphorylation of PDGFR-beta and ERK1/2. The 4-HNE-induced production of MMP-1 was prevented when the activation of PDGFR-beta and ERK1/2 was inhibited. The present results suggest that the activation of PDGFR-beta and ERK1/2 is involved in the production of MMP-1 in oxLDL- and 4-HNE-stimulated human coronary SMCs. 相似文献
36.
Interleukin-6 regulation of transforming growth factor (TGF)-beta receptor compartmentalization and turnover enhances TGF-beta1 signaling 总被引:2,自引:0,他引:2
Transforming growth factor (TGF)-beta1 is a key cytokine involved in the pathogenesis of fibrosis in many organs, whereas interleukin (IL)-6 plays an important role in the regulation of inflammation. Recent reports demonstrate interaction between the two cytokines in disease states. We have assessed the effect of IL-6 on TGF-beta1 signaling and defined the mechanism by which this occurred. Stimulation of Smad-responsive promoter (SBE)4-Lux activity by TGF-beta1 was significantly greater in the presence of IL-6 than that induced by TGF-beta1 alone. Augmented TGF-beta1 signaling following the addition of IL-6 appeared to be mediated through binding to the cognate IL-6 receptor, the presence of which was confirmed by fluorescence-activated cell sorting and Stat-specific signaling. TGF-beta1 receptors internalize by both caveolin-1 (Cav-1) lipid raft and early endosome antigen 1 (EEA-1) non-lipid raft pathways, with non-lipid raft-associated internalization increasing TGF-beta1 signaling. Affinity labeling of TGF-beta1 receptors demonstrated that IL-6 stimulation resulted in increased partitioning of TGF-beta receptors to the non-lipid raft fraction. There was no change in expression of Cav-1; however, following IL-6 stimulation, co-immunoprecipitation demonstrated decreased association of IL-6 receptor with Cav-1. Increased TGF-beta1-dependent Smad signaling by IL-6 was significantly attenuated by inhibition of clathrin-mediated endocytosis and augmented by depletion of membrane cholesterol. These results indicate that IL-6 increased trafficking of TGF-beta1 receptors to non-lipid raft-associated pools results in augmented TGF-beta1 Smad signaling. 相似文献
37.
Takahiro Sakai Ikuo Miura Satomi Yamada-Ishibashi Yayoi Wakita Yuki Kohara Yukiko Yamazaki Takeshi Inoue Ryo Kominami Kazuo Moriwaki Toshihiko Shiroishi Hiromichi Yonekawa Yoshiaki Kikkawa 《Experimental Animals》2004,53(2):151-154
We updated a database of microsatellite marker polymorphisms found in inbred strains of the mouse, most of which were derived from the wild stocks of four Mus musculus subspecies, M. m. domesticus, M. m. musculus, M. m.castaneus and M. m. molossinus. The major aim of constructing this database was to establish the genetic status of these inbred strains as resources for linkage analysis and positional cloning. The inbred strains incorporated in our database are A/J, C57BL/6J, CBA/J, DBA/2J, SM/J, SWR/J, 129Sv/J, MSM/Ms, JF1/Ms, CAST/Ei, NC/Nga, BLG2/Ms, NJL/Ms, PGN2/Ms, SK/CamEi and SWN/Ms, which have not or have only been poorly incorporated in the Whitehead Institute/MIT (WI/MIT) microsatellite database. The number of polymorphic microsatellite loci incorporated in our database is over 1,000 in all strains, and the URL site for our database is located at http:// www.shigen.nig.ac.jp /mouse/mmdbj/mouse.html. 相似文献
38.
Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHS-R), was isolated from the rat stomach and determined to be n-octanoylated 28-amino-acid peptide. In this study, we studied the distribution of ghrelin-producing cells (ghrelin cells) in the gastrointestinal tract of male and female rainbow trout (Oncorhynchus mykiss) by immunohistochemistry using N-terminal region-recognizing antibody and also by in situ hybridization using a trout ghrelin-specific cRNA probe. Ghrelin cells were found in the mucosal layer of the stomach but not in the myenteric plexus, and no ghrelin cells were observed in other regions of the gastrointestinal tract. Ghrelin cells could be classified into two types: closed- and opened-type cells. The density of ghrelin cells increased gradually in the direction from the cardiac to pyloric portions of the stomach in both sexes. The number of ghrelin cells per unit area seemed to be higher in females than in males. In conclusion, trout ghrelin cells exist in the stomach and are classified into two types of cells, closed- and opened-type cells. 相似文献
39.
Giorgia?Chiatante Oronzo?Capozzi Marta?Svartman Polina?Perelman Lucy?Centrone Svetlana?S.?Romanenko Takafumi?Ishida Mirela?Valeri Melody?E.?Roelke-Parker Roscoe?StanyonEmail authorView authors OrcID profile 《Chromosoma》2017,126(4):519-529
Cytogenetics has historically played a key role in research on squirrel monkey (genus Saimiri) evolutionary biology. Squirrel monkeys have a diploid number of 2n = 44, but vary in fundamental number (FN). Apparently, differences in FN have phylogenetic implications and are correlated with geographic regions. A number of hypothetical mechanisms were proposed to explain difference in FN: translocations, heterochromatin, or, most commonly, pericentric inversions. Recently, an additional mechanism, centromere repositioning, was discovered, which can alter chromosome morphology and FN. Here, we used chromosome banding, chromosome painting, and BAC-FISH to test these hypotheses. We demonstrate that centromere repositioning on chromosomes 5 and 15 is the mechanism that accounts for differences in FN. Current phylogenomic trees of platyrrhines provide a temporal framework for evolutionary new centromeres (ENC) in Saimiri. The X-chromosome ENC could be up to 15 million years (my) old that on chromosome 5 as recent as 0.3 my. The chromosome 15 ENC is intermediate, as young as 2.24 my. All ENC have abundant satellite DNAs indicating that the maturation process was fairly rapid. Callithrix jacchus was used as an outgroup for the BAC-FISH data analysis. Comparison with scaffolds from the S. boliviensis genome revealed an error in the last marmoset genome release. Future research including at the sequence level will provide better understanding of chromosome evolution in Saimiri and other platyrrhines. Probably other cases of differences in chromosome morphology and FN, both within and between taxa, will be shown to be due to centromere repositioning and not pericentric inversions. 相似文献
40.