首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3014篇
  免费   169篇
  2022年   16篇
  2021年   33篇
  2020年   28篇
  2019年   33篇
  2018年   51篇
  2017年   33篇
  2016年   58篇
  2015年   89篇
  2014年   103篇
  2013年   230篇
  2012年   160篇
  2011年   178篇
  2010年   106篇
  2009年   111篇
  2008年   142篇
  2007年   153篇
  2006年   172篇
  2005年   151篇
  2004年   143篇
  2003年   163篇
  2002年   131篇
  2001年   83篇
  2000年   92篇
  1999年   79篇
  1998年   57篇
  1997年   38篇
  1996年   33篇
  1995年   30篇
  1994年   24篇
  1993年   26篇
  1992年   39篇
  1991年   34篇
  1990年   30篇
  1989年   35篇
  1988年   20篇
  1987年   18篇
  1986年   24篇
  1985年   29篇
  1984年   14篇
  1983年   15篇
  1982年   13篇
  1981年   18篇
  1978年   15篇
  1977年   15篇
  1976年   8篇
  1975年   17篇
  1974年   11篇
  1973年   17篇
  1972年   10篇
  1966年   8篇
排序方式: 共有3183条查询结果,搜索用时 31 毫秒
991.
A novel SUMO-1/Smt3-specific isopeptidase, SMT3IP2/Axam2 (Smt3-specific isopeptidase 2), was cloned and characterized. The catalytic domains in the carboxyl-terminal region were very much similar to those of other SUMO-1/Smt3-specific proteases, but the amino-terminal part was quite different. The enzyme specifically bound to Smt3a and Smt3b but not to SUMO-1. The SMT3IP2 expressed by Escherichia coli could cleave SUMO-1, Smt3a, or Smt3b from a SUMO-1/RanGAP1, Smt3a/RanGAP1, or Smt3b/RanGAP1 conjugate, respectively, and had the activity of a carboxyl-terminal hydrolase to produce a glycine residue in the carboxyl terminus of these ubiquitin-like proteins. The sequence data indicated that the amino acid sequence of SMT3IP2 was mostly identical to that of rat Axam, which binds to Axin and promotes the degradation of beta-catenin, although its amino-terminal region was much shorter than that of Axam. Therefore, we designated this isopeptidase SMT3IP2/Axam2. When human SW480 cells were transfected with wild-type SMT3IP2/Axam2, the beta-catenin disappeared. When the cells were transfected with the SMT3IP2/Axam2 C500A mutant, which had neither isopeptidase nor carboxyl-terminal hydrolase activity, or with the 1-352 mutant, which lacked the catalytic domain of the enzyme, again the beta-catenin disappeared, indicating that the enzyme activities were not necessary for the instability of beta-catenin in this transfection assay system and that its competition with Dvl for binding to Axin may be important for the instability of beta-catenin as suggested previously for Axam (Kadoya, T., Kishida, S., Fukui, A., Hinoi, T., Michiue, T., Asashima, M., and Kikuchi, A. (2000) J. Biol. Chem. 275, 37030-37037). The involvement of its enzyme activities in the Wnt signaling pathway remains to be elucidated.  相似文献   
992.
A metabolic activation system with an S9 fraction or liver microsomes was applied to a reporter gene assay in vitro for the screening of estrogenicity of chemicals. The endpoint (luciferase) was luciferase induction in cells transfected with a reporter plasmid containing an estrogen-responsive element linked to the luciferase gene. Compounds were applied to the reporter gene assay system after pretreatment or simultaneous treatment with an S9 fraction or liver microsomes. Both trans-stilbene and methoxychlor themselves showed no or little estrogenicity, but when they were treated with an S9 fraction or liver microsomes, they demonstrated strong effects, indicating their metabolites to be estrogenic. When four pyrethroid insecticides were subjected to this assay system, however, they showed no estrogenicity even with liver microsome or S9 mix treatment.  相似文献   
993.
Genes for subunits of acetyl coenzyme A carboxylase (ACC), which is the enzyme that catalyzes the first step in the synthesis of fatty acids in Lactobacillus plantarum L137, were cloned and characterized. We identified six potential open reading frames, namely, manB, fabH, accB, accC, accD, and accA, in that order. Nucleotide sequence analysis suggested that fabH encoded beta-ketoacyl-acyl carrier protein synthase III, that the accB, accC, accD, and accA genes encoded biotin carboxyl carrier protein, biotin carboxylase, and the beta and alpha subunits of carboxyltransferase, respectively, and that these genes were clustered. The organization of acc genes was different from that reported for Escherichia coli, for Bacillus subtilis, and for Pseudomonas aeruginosa. E. coli accB and accD mutations were complemented by the L. plantarum accB and accD genes, respectively. The predicted products of all five genes were confirmed by using the T7 expression system in E. coli. The gene product of accB was biotinylated in E. coli. Northern and primer extension analyses demonstrated that the five genes in L. plantarum were regulated polycistronically in an acc operon.  相似文献   
994.
Using a genomic library constructed from Saccharomyces cerevisiae, we have identified a gene GFA1 that confers resistance to methylmercury toxicity. GFA1 encodes L-glutamine:D-fructose-6-phosphate amidotransferase (GFAT) and catalyzes synthesis of glucosamine-6-phosphate. Transformed yeast cells expressing GFA1 demonstrated resistance to methylmercury but no resistance to p-chloromercuribenzoate, a GFAT inhibitor. The cytotoxicity of methylmercury was inhibited by loading excess glucosamine 6-phosphate into yeast. Considering that GFAT is an essential cellular enzyme, our findings suggest that GFAT is the major target molecule of methylmercury in yeasts. This report is the first to identify the target molecule of methylmercury toxicity in eukaryotic cells.  相似文献   
995.
The complete nucleotide sequence of the genome of a symbiotic bacterium Mesorhizobium loti strain MAFF303099 was determined. The genome of M. loti consisted of a single chromosome (7,036,071 bp) and two plasmids, designated as pMLa (351,911 bp) and pMLb (208, 315 bp). The chromosome comprises 6752 potential protein-coding genes, two sets of rRNA genes and 50 tRNA genes representing 47 tRNA species. Fifty-four percent of the potential protein genes showed sequence similarity to genes of known function, 21% to hypothetical genes, and the remaining 25% had no apparent similarity to reported genes. A 611-kb DNA segment, a highly probable candidate of a symbiotic island, was identified, and 30 genes for nitrogen fixation and 24 genes for nodulation were assigned in this region. Codon usage analysis suggested that the symbiotic island as well as the plasmids originated and were transmitted from other genetic systems. The genomes of two plasmids, pMLa and pMLb, contained 320 and 209 potential protein-coding genes, respectively, for a variety of biological functions. These include genes for the ABC-transporter system, phosphate assimilation, two-component system, DNA replication and conjugation, but only one gene for nodulation was identified.  相似文献   
996.
Podoplanin (PDPN), also known as Aggrus, possesses three tandem repeat of platelet aggregation-stimulating (PLAG) domains in its N-terminus. Among the PLAG domains, sialylated O-glycan on Thr52 of PLAG3 is essential for the binding to C-type lectin-like receptor-2 (CLEC-2) and the platelet-aggregating activity of human PDPN (hPDPN). Although various anti-hPDPN monoclonal antibodies (mAbs) have been generated, no specific mAb has been reported to target the epitope containing glycosylated Thr52. We recently established CasMab technology to develop mAbs against glycosylated membrane proteins. Herein, we report the development of a novel anti-glycopeptide mAb (GpMab), LpMab-12. LpMab-12 detected endogenous hPDPN by flow cytometry. Immunohistochemical analyses also showed that hPDPN-expressing lymphatic endothelial and cancer cells were clearly labeled by LpMab-12. The minimal epitope of LpMab-12 was identified as Asp49–Pro53 of hPDPN. Furthermore, LpMab-12 reacted with the synthetic glycopeptide of hPDPN, corresponding to 38–54 amino acids (hpp3854: 38-EGGVAMPGAEDDVVTPG-54), which carries α2–6 sialylated N-acetyl-D-galactosamine (GalNAc) on Thr52. LpMab-12 did not recognize non-sialylated GalNAc-attached glycopeptide, indicating that sialylated GalNAc on Thr52 is necessary for the binding of LpMab-12 to hPDPN. Thus, LpMab-12 could serve as a new diagnostic tool for determining whether hPDPN possesses the sialylation on Thr52, a site-specific post-translational modification critical for the hPDPN association with CLEC-2.  相似文献   
997.
998.
999.
Embryonic stem cells (ES cells) are characterized by their pluripotency and infinite proliferation potential. Ever since ES cells were first established in 1981, there have been a growing number of studies aimed at clinical applications of ES cells. In recent years, various types of differentiation inducement systems using ES cells have been established. Further studies have been conducted to utilize differentiation inducement systems in the field of regenerative medicine. For cellular treatments using stem cells including ES cells, differentiation induction should be performed in a sufficient manner to obtain the intended cell lineages. Lignin is a high-molecular amorphous material that forms plants together with cellulose and hemicelluloses, in which phenylpropane fundamental units are complexly condensed. Lignin derivatives have been shown to have several bioactive functions. In spite of these findings, few studies have focused on the effects of lignin on stem cells. Our study aimed to develop a novel technology using lignin to effectively induce ES cells to differentiate into neuroectodermal cells including ocular cells and neural cells. Since lignin can be produced at a relatively low cost in large volumes, its utilization is expected for more convenient differentiation induction technologies and in the field of regenerative medicine in the future.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号