首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3515篇
  免费   224篇
  国内免费   2篇
  2022年   15篇
  2021年   39篇
  2020年   23篇
  2019年   22篇
  2018年   37篇
  2017年   28篇
  2016年   65篇
  2015年   97篇
  2014年   107篇
  2013年   186篇
  2012年   186篇
  2011年   171篇
  2010年   122篇
  2009年   113篇
  2008年   187篇
  2007年   186篇
  2006年   181篇
  2005年   183篇
  2004年   198篇
  2003年   171篇
  2002年   171篇
  2001年   118篇
  2000年   104篇
  1999年   70篇
  1998年   50篇
  1997年   36篇
  1996年   33篇
  1995年   38篇
  1994年   23篇
  1993年   25篇
  1992年   63篇
  1991年   61篇
  1990年   47篇
  1989年   85篇
  1988年   63篇
  1987年   43篇
  1986年   42篇
  1985年   53篇
  1984年   25篇
  1983年   33篇
  1982年   30篇
  1981年   15篇
  1980年   15篇
  1979年   21篇
  1978年   16篇
  1977年   18篇
  1975年   12篇
  1974年   10篇
  1973年   18篇
  1972年   11篇
排序方式: 共有3741条查询结果,搜索用时 31 毫秒
931.
932.
Two new Lycopodium alkaloids, serratezomines D (1) and E (2), were isolated from the club moss Lycopodium serratum var. serratum. Serratezomine D (1) is a new lucidine-type alkaloid, while serratezomine E (2) is a new phlegmarane-type alkaloid. The structures and relative stereochemistry of 1 and 2 were elucidated on the basis of spectroscopic data. Serratezomine D (1) exhibited an inhibitory activity against acetylcholinesterase.  相似文献   
933.
The flagellin of Pseudomonas syringae pv. tabaci is a glycoprotein that contains O-linked oligosaccharides composed of rhamnosyl and 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methylglucosyl residues. These O-linked glycans are released by hydrazinolysis and then labeled at their reducing ends with 2-aminopyridine (PA). A PA-labeled trisaccharide and a PA-labeled tetrasaccharide are isolated by normal-phase high-performance liquid chromatography. These oligosaccharides are structurally characterized using mass spectrometry and NMR spectroscopy. Our data show that P. syringae pv. tabaci flagellin is glycosylated with a tetrasaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rhap-(1→2)-α-l-Rha-(1→, as well a trisaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rha-(1→, which was identified in a previous study.  相似文献   
934.
We have previously shown that in Dictyostelium cells a 32 kDa protein is rapidly and completely dephosphorylated in response to starvation that is essential for the initiation of differentiation (Akiyama & Maeda 1992). In the present work, this phosphoprotein was identified as a homologue (Dd-RPS6) of ribosomal protein S6 (RPS6) that is an essential member for protein synthesis. As expected, Dd-RPS6 seems to be absolutely required for cell survival, because we failed to obtain antisense-RNA mediated cells as well as Dd-rps6-null cells by homologous recombination in spite of many trials. In many kinds of cell lines, RPS6 is known to be located in the nucleus and cytosol, but Dd-RPS6 is predominantly located in the cell cortex with cytoskeletons, and in the contractile ring of just-dividing cells. In this connection, the overexpression of Dd-RPS6 greatly impairs cytokinesis during axenic shake-cultures in growth medium, resulting in the formation of multinucleate cells. Much severe impairment of cytokinesis was observed when Dd-RPS6-overexpressing cells (Dd-RPS6(OE) cells) were incubated on a living Escherichia coli lawn. The initiation of differentiation triggered by starvation was also delayed in Dd-RPS6(OE) cells. In addition, Dd-RPS6(OE) cells exhibit defective differentiation into prespore cells and spores during late development. Thus, it is likely that the proper expression of Dd-RPS6 may be of importance for the normal progression of late differentiation as well as for the initiation of differentiation.  相似文献   
935.
The polycystic kidney disease (PKD) 1L3-PKD2L1 channel is a candidate sour taste receptor expressed in mammalian taste receptor cells. Various acids are reported to activate PKD channels after the removal of the acid stimuli, but little information is available on the activation of these channels by acetic acid. It was difficult to analyze the PKD channel activation by acetic acid using Ca2+ imaging experiments because this acid induces a transient and nonspecific response in cultured cells. Here, we developed a novel method to evaluate PKD channel activation by acetic acid. Nonspecific responses were observed only over a short period after the application of acetic acid. In contrast, PKD channel activation evoked by acetic acid as well as citric acid was detected even at a later time point. This method revealed that PKD1L3-PKD2L1 channel activation by acetic acid was pH-dependent and occurred when the ambient pH was <3.1.  相似文献   
936.
The open reading frame alr1585 of Anabaena sp. strain PCC 7120 encodes a heme-dependent peroxidase (Anabaena peroxidase [AnaPX]) belonging to the novel DyP-type peroxidase family (EC 1.11.1.X). We cloned and heterologously expressed the active form of the enzyme in Escherichia coli. The purified enzyme was a 53-kDa tetrameric protein with a pI of 3.68, a low pH optima (pH 4.0), and an optimum reaction temperature of 35°C. Biochemical characterization revealed an iron protoporphyrin-containing heme peroxidase with a broad specificity for aromatic substrates such as guaiacol, 4-aminoantipyrine and pyrogallol. The enzyme efficiently catalyzed the decolorization of anthraquinone dyes like Reactive Blue 5, Reactive Blue 4, Reactive Blue 114, Reactive Blue 119, and Acid Blue 45 with decolorization rates of 262, 167, 491, 401, and 256 μM·min−1, respectively. The apparent Km and kcat/Km values for Reactive Blue 5 were 3.6 μM and 1.2 × 107 M−1 s−1, respectively, while the apparent Km and kcat/Km values for H2O2 were 5.8 μM and 6.6 × 106 M−1 s−1, respectively. In contrast, the decolorization activity of AnaPX toward azo dyes was relatively low but was significantly enhanced 2- to ∼50-fold in the presence of the natural redox mediator syringaldehyde. The specificity and catalytic efficiency for hydrogen donors and synthetic dyes show the potential application of AnaPX as a useful alternative of horseradish peroxidase or fungal DyPs. To our knowledge, this study represents the only extensive report in which a bacterial DyP has been tested in the biotransformation of synthetic dyes.In textile, food, and dyestuff industries, reactive dyes such as azo and anthraquinone (AQ) and pthalocyanine-based dyes constitute one of the extensively used classes of synthetic dyes. However, it has been estimated that approximately 50% of the applied reactive dye is wasted because of hydrolysis during the dyeing process (26, 35). This results in a great effluent problem for the industries because of the recalcitrant nature of these dyes. With increased public concern and ecological awareness, in addition to stricter legislative control of wastewater discharge in recent years, there is an increased interest in various methods of dye decolorization. Dye decolorization using physicochemical processes such as coagulation, adsorption, and oxidation with ozone has proved to be effective. However, these processes are usually expensive, generate large volumes of sludge, and require the addition of environmentally hazardous chemical additives (26). There are several reports of microorganisms capable of decolorizing synthetic dyes. This has been attributed to their growth and production of enzymes such as laccase (1, 9, 40), azoreductases (3), and peroxidases, for example, lignin peroxidase (12, 25, 36), manganese peroxidase (10, 38), and versatile peroxidase (16). However, most of the synthetic dyes are xenobiotic compounds that are poorly degraded using the typical biological aerobic treatments. Furthermore, microbial anaerobic reductions of synthetic dyes are known to generate compounds such as aromatic amines that are generally more toxic than the dyes themselves (3). Therefore, for environmental safety, the use of enzymes instead of enzyme-producing microorganisms presents several advantages such as increased enzyme production, enhanced stability and/or activity, and lower costs by using recombinant DNA technology.Peroxidases are heme-containing enzymes that use hydrogen peroxide (H2O2) as the electron acceptor to catalyze numerous oxidative reactions. They are found widely in nature, both in prokaryotes and eukaryotes, and are largely grouped into plant and animal superfamilies. They are one of the most studied enzymes because of their inherent spectroscopic properties and potential use in both diagnostic and bioindustrial applications. In particular, their ability to degrade a wide range of substrates has recently stimulated interest in their potential application in environmental bioremediation of recalcitrant and xenobiotic wastes (10, 25, 26).Recently, a novel family of heme peroxidases characterized by broad dye decolorization activity has been identified in various fungal species such as Thanatephorus cucumeris Dec1 (18), Termitomyces albuminosus (15), Polyporaceae sp. (15), Pleurotus ostreatus (13), and Marasmius scorodonius (27). Because of their broad substrate specificity, low pH optima, lack of a conserved active site distal histidine, and structural divergence from classical plant and animal peroxidases (32), these proteins have been proposed to belong to the novel DyP peroxidase family. Over 400 proteins of prokaryotic and eukaryotic origins have been grouped in the DyP peroxidase family, Pfam 04261 (http://pfam.sanger.ac.uk/), and it is apparent from genome databases that many species possess DyP. The ability of these proteins to effectively degrade hydroxyl-free AQ and azo dyes as well as the specificity for typical peroxidase substrates illustrates their potential use in the bioremediation of wastewater contaminated with synthetic dyes. However, with the exception of a DyP from the plant pathogenic fungus T. cucumeris Dec1 (an anamorph of Rhizoctonia solani, a very common fungal plant pathogen), which has been characterized extensively (18, 28, 30-32, 34), little information is available on other members of the DyP family. In particular, studies on bacterial DyPs have been limited to only the automatically translated sequence or structural data (41, 42). Within the context of further understanding the structure-function and potential applicability of these novel types of enzymes in general, we have taken an interest in DyP-type enzymes, particularly, the less known bacterial groups.Cyanobacteria (blue-green algae) represent the most primitive, oxygenic, plant-type photosynthetic organisms and are thought to be involved in greater than 20 to 30% of the global photosynthetic primary production of biomass, accompanied by the cycling of oxygen. Anabaena sp. strain PCC 7120 is a filamentous, heterocyst-forming cyanobacterium capable of nitrogen fixation and has long been used as a model organism to study the prokaryotic genetics and physiology of cellular differentiation, pattern formation, and nitrogen fixation (14). This strain''s genome sequence is complete and annotated (17). From bioinformatics analysis of the Anabaena sp. strain PCC 7120 genome, we identified an open reading frame (ORF), alr1585, encoding a putative heme-dependent peroxidase exhibiting homology to T. cucumeris Dec1, DyP. Here, we report on the characterization of this novel bacterial DyP, designated AnaPX (for Anabaena peroxidase), from the cyanobacterium Anabaena sp. strain PCC 7120, with broad specificity for both aromatic compounds and synthetic dyes such as AQ dyes.  相似文献   
937.
Macrophage-derived foam cells play important roles in the progression of atherosclerosis. We reported previously that ERK1/2-dependent granulocyte/macrophage colony-stimulating factor (GM-CSF) expression, leading to p38 MAPK/ Akt signaling, is important for oxidized low density lipoprotein (Ox-LDL)-induced macrophage proliferation. Here, we investigated whether activation of AMP-activated protein kinase (AMPK) could suppress macrophage proliferation. Ox-LDL-induced proliferation of mouse peritoneal macrophages was assessed by [3H]thymidine incorporation and cell counting assays. The proliferation was significantly inhibited by the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and restored by dominant-negative AMPKα1, suggesting that AMPK activation suppressed macrophage proliferation. AICAR partially suppressed Ox-LDL-induced ERK1/2 phosphorylation and GM-CSF expression, suggesting that another mechanism is also involved in the AICAR-mediated suppression of macrophage proliferation. AICAR suppressed GM-CSF-induced macrophage proliferation without suppressing p38 MAPK/Akt signaling. GM-CSF suppressed p53 phosphorylation and expression and induced Rb phosphorylation. Overexpression of p53 or p27kip suppressed GM-CSF-induced macrophage proliferation. AICAR induced cell cycle arrest, increased p53 phosphorylation and expression, and suppressed GM-CSF-induced Rb phosphorylation via AMPK activation. Moreover, AICAR induced p21cip and p27kip expression via AMPK activation, and small interfering RNA (siRNA) of p21cip and p27kip restored AICAR-mediated suppression of macrophage proliferation. In conclusion, AMPK activation suppressed Ox-LDL-induced macrophage proliferation by suppressing GM-CSF expression and inducing cell cycle arrest. These effects of AMPK activation may represent therapeutic targets for atherosclerosis.  相似文献   
938.
939.
940.
Interleukin-7 (IL-7) is required for lymphocyte development and homeostasis although the actual sites of IL-7 production have never been clearly identified. We produced a bacterial artificial chromosome (BAC) transgenic mouse expressing ECFP in the Il7 locus. The construct lacked a signal peptide and ECFP (enhanced cyan fluorescent protein ) accumulated inside IL-7-producing stromal cells in thoracic thymus, cervical thymus and bone marrow. In thymus, an extensive reticular network of IL-7-containing processes extended from cortical and medullary epithelial cells, closely contacting thymocytes. Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with IL-7-producing cells as we demonstrate by intravital imaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号