首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3514篇
  免费   224篇
  国内免费   2篇
  2022年   14篇
  2021年   39篇
  2020年   23篇
  2019年   22篇
  2018年   37篇
  2017年   28篇
  2016年   65篇
  2015年   97篇
  2014年   107篇
  2013年   186篇
  2012年   186篇
  2011年   171篇
  2010年   122篇
  2009年   113篇
  2008年   187篇
  2007年   186篇
  2006年   181篇
  2005年   183篇
  2004年   198篇
  2003年   171篇
  2002年   171篇
  2001年   118篇
  2000年   104篇
  1999年   70篇
  1998年   50篇
  1997年   36篇
  1996年   33篇
  1995年   38篇
  1994年   23篇
  1993年   25篇
  1992年   63篇
  1991年   61篇
  1990年   47篇
  1989年   85篇
  1988年   63篇
  1987年   43篇
  1986年   42篇
  1985年   53篇
  1984年   25篇
  1983年   33篇
  1982年   30篇
  1981年   15篇
  1980年   15篇
  1979年   21篇
  1978年   16篇
  1977年   18篇
  1975年   12篇
  1974年   10篇
  1973年   18篇
  1972年   11篇
排序方式: 共有3740条查询结果,搜索用时 15 毫秒
911.
The relationship between cytotoxicity induced by N-nitrosofenfluramine and mitochondrial or glycolytic adenosine triphosphate (ATP) synthesis-dependent intracellular bioenergetics was studied in isolated rat hepatocytes. The supplementation of fructose, an ATP-generating glycolytic substrate, to hepatocyte suspensions prevented N-nitrosofenfluramine-induced cell injury accompanied by the formation of cell blebs, abrupt loss of intracellular ATP and reduced glutathione and mitochondrial membrane potential (DeltaPsi), and the accumulation of oxidized glutathione and malondialdehyde, indicating lipid peroxidation, during a 2h incubation period. Fructose (1-20mM) resulted in concentration-dependent protection against the cytotoxicity of N-nitrosofenfluramine at a concentration of 0.6mM, a low toxic dose. Pretreatment with xylitol, another glycolytic substrate, at concentration of 15mM also prevented the cytotoxicity caused by the nitroso compound, but neither glucose nor sucrose exhibited protective effects. In addition, fructose inhibited N-nitrosofenfluramine (0.5 and 0.6mM)-induced DNA damage, as evaluated in the comet assay, indicating that nuclei as well as mitochondria are target sites of the compound. These results indicate that (a) the onset of N-nitrosofenfluramine-induced cytotoxicity in rat hepatocytes is linked to mitochondrial failure, and that (b) the insufficient supply of ATP in turn limits the activities of all energy-requiring reactions and consequently leads to acute cell death.  相似文献   
912.
The Ubc13 E2 ubiquitin-conjugating enzyme is essential for BCR-, TLR-, and IL-1 receptor (IL-1R)-mediated immune responses. Although Ubc13-deficient mice show defects in BCR-, TLR/IL-1R-, or CD40-mediated activation of mitogen-activated protein kinases, the function of Ubc13 in TCR-mediated signaling and responses remains uncertain. To address this, we here generated T cell-specific conditional Ubc13-deficient mice. The frequency of T lymphocytes was severely reduced in spleens from Ubc13-deficient mice. Moreover, Ubc13-deficient thymocytes displayed defective proliferation in response to anti-CD3/CD28 or PMA/ionophore stimulation. Regarding the signal transduction, although NF-kappaB activation was modestly affected, PMA/ionophore-induced activation of Jnk and p38 was profoundly impaired in Ubc13-deficient thymocytes. In addition, PMA/ionophore-mediated ubiquitination of NF-kappaB essential modulator (NEMO)/IkappaB kinase gamma (IKKgamma) and phosphorylation of TGF-beta-activated kinase 1 (TAK1) were nearly abolished in Ubc13-deficient thymocytes. Thus, Ubc13 plays an important role in thymocyte TCR-mediated signaling and immune responses.  相似文献   
913.
Heparanase is an endo-beta-glucuronidase that specifically cleaves heparan sulfate (HS) chains. Heparanase is involved in the process of metastasis and angiogenesis through the degradation of HS chains of the extracellular matrix and cell surface. Recently, we demonstrated that heparanase was localized in the cell nucleus of normal esophageal epithelium and esophageal cancer, and that its expression was correlated with cell differentiation. However, the nuclear function of heparanase remains unknown. To elucidate the role of heparanase in esophageal epithelial differentiation, primary human esophageal cells were grown in monolayer as well as organotypic cultures, and cell differentiation was induced. Expression of heparanase, HS, involucrin, and p27 was determined by immunostaining and Western blotting. SF4, a novel pharmacological inhibitor, was used to specifically inhibit heparanase activity. Upon esophageal cell differentiation, heparanase was translocated from the cytoplasm to the nucleus. Such translocation of heparanase appeared to be associated with the degradation of HS chains in the nucleus and changes in the expression of keratinocyte differentiation markers such as p27 and involucrin, whose induction was inhibited by SF4. Furthermore, these in vitro observations agreed with the expression pattern of heparanase, HS, involucrin, cytokeratin 13, and p27 in normal esophageal epithelium. Nuclear translocation of heparanase and its catalytic cleavage of HS may play a critical role in the differentiation of esophageal epithelial cells. Our study provides a novel insight into the role of heparanase in an essential differentiation process.  相似文献   
914.
BACKGROUND AND AIMS: Previous studies have shown that transgenic rice plants overexpressing YK1, which possesses dihydroflavonol-4-reductase (DFR) activity, showed biotic and abiotic stress tolerance. High throughput profiles of metabolites have also been shown in such transgenic plants by Fourier transform ion cyclotron mass spectrometry. In this study, capillary electrophoresis mass spectrometry analysis (CE/MS) was employed to identify precise metabolites such as organic acids, amino acids and sugars. METHODS: Using CE/MS, we analysed several metabolites of glycolysis, the tricarboxylic acid (TCA) cycle and the pentose phosphate pathway. In addition, the concentrations of sugars and ion were quantified. KEY RESULTS: In YK1 (DFR)-overexpressing plants, the concentrations of cis-aconitate, isocitrate and 2-oxoglutarate were higher in leaves, whereas those of fructose-1,6-bisphosphate and glyceraldehyde-3-phosphate were lower in roots. In seeds, the amounts of free amino acids and metals were altered, whereas sugars in seeds were kept constant. In YK1 calli, an approx. 3-fold increase in glutathione was observed, whereas the activities of glutathione peroxidase and glutathione reductase were concomitantly increased. CONCLUSIONS: The overexpression of YK1 (DFR) was associated with slight changes in the amounts of several metabolites analysed in whole plants, whilst glutathione derivatives were substantially increased in suspension-cultured cells.  相似文献   
915.
916.
A novel thermoacidophilic iron-reducing Archaeon, strain NA−1, was isolated from a hot fumarole in Manza, Japan. Strain NA-1 could grow autotrophically using H2 or S0 as an electron donor and Fe3+ as an electron acceptor, and also could grow heterotrophically using some organic compounds. Fe3+ and O2 served as electron acceptors for growth. However, S0, NO3 , NO2 , SO4 2−, Mn4+, fumarate, and Fe2O3 did not serve as electron acceptors. The ranges of growth temperature and pH were 60–90°C (optimum: 80°C) and pH 1.0–5.0 (optimum: pH 1.2–1.5), respectively. Cells were nearly regular cocci with an envelope comprised of the cytoplasmic membrane and a single outer S-layer. The crenarchaeal-specific quinone (cardariellaquinone) was detected, and the genomic DNA G + C content was 29.9 mol%. From 16S rDNA analysis, it was determined that strain NA-1 is closely related to Acidianus ambivalens (93.1%) and Acidianus infernus (93.0%). However, differences revealed by phylogenetic and phenotypic analyses clearly show that strain NA-1 represents a new species, Acidianus manzaensis, sp. nov., making it the first identified thermoacidophilic iron-reducing microorganism (strain NA-1T = NBRC 100595 = ATCC BAA 1057). Strain NA-1 has been deposited in the culture collections of the National Institute of Technology and Evolution (NBRC 100595) and American Type Culture Collection (ATCC BAA 1057). The 16S rDNA sequence has been deposited at GenBank under accession number AB182498.  相似文献   
917.
Glucuronidation is a major metabolic pathway in the biotransformation of many xenobiotics and endogeneous compounds. There have been many studies on the formation of O-, N- or S-glucuronides and identification of the UDP-glucuronosyltransferase (UGT) isoforms responsible for the formation of these glucuronides. However, there is no information available on which UGT isoform(s) catalyzes C-glucuronidation. In the present study, 16 human UGTs (UGTs 1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28) were cloned and expressed in baculovirus-infected insect cells and investigated to determine their C-glucuronidating activity toward phenylbutazone (PB). Among the UGT isoforms investigated, only UGT1A9 catalyzed PB C-glucuronidation. Human liver and kidney microsomes, which are well known to express UGT1A9, had C-glucuronidating activity toward PB. However, the jejunum, which did not express UGT1A9, had no C-glucuronidating activity. These results demonstrate for the first time that PB C-glucuronidation is catalyzed by only UGT1A9.  相似文献   
918.
Recent reports have revealed that bone marrow (BM)-derived cells can be constituents in a number of organs, especially in remodeling tissue. Using bone marrow transplantation (BMT) technique, we found that BM can serve as a source of both myoepithelial cells and periductal fibroblasts in the mammary gland. The numbers of BM-derived myoepithelial cell were 4.8-fold, and those of periductal fibroblast were 2.4-fold higher in the mice when BMT which was performed at the pubertal stage, as compared with BMT was performed at the postpubertal stage. Treatment with estrogen+progesterone pellet increased numbers of BM-derived myoepithelial cells and periductal fibroblasts, to levels 4.5- and 2.6-fold higher than in placebo mice, respectively. In situ hybridization revealed BM-derived periductal fibroblasts expressed insulin-like growth factor I mRNAs that are known to regulate mammary gland. These results suggest that drastic structural change that is induced by hormonal stimulation increased the recruitment of BM-derived myoepithelial cells and periductal fibroblasts to the mammary gland context.  相似文献   
919.
Previous studies have shown that intracavernous injection of vascular endothelial growth factor (VEGF) restored erectile function in diabetic rats. However, the mechanism of VEGF in diabetes-related erectile dysfunction (ED) has not been fully investigated. We hypothesize that intracavernous injection of VEGF may reverse diabetes-related ED through modulation of the insulin-like growth factor system and sex hormone receptors. To test this hypothesis the erectile function of treated and control rats was analyzed by measurement of intracavernous pressure (ICP) following electrostimulation of the cavernous nerves. Mean ICP was significantly lower in non-treated diabetic rats compared to controls. After VEGF injection, ICP was significantly higher than in non-treated diabetic rats. IGFBP-3 mRNA and protein expression was significantly higher in non-treated diabetic rat crura than controls, while VEGF-treated animals had control levels. ER-beta and PR mRNA and protein expression was significantly lower in non-treated diabetic rat crura. After VEGF injection, ER-beta and PR mRNA and protein expression was similar to control levels. Expression of AR and ER-alpha was the same in all groups. These findings suggest that orthotopic injection of VEGF may improve the functional recovery of diabetes-related ED through modulation of the insulin-like growth factor system and sex hormone receptors. To our knowledge, this is the first study demonstrating that VEGF treatment restores erectile function through restoration of the insulin-like growth factor system and sex hormone receptor genes at the mRNA and protein levels in diabetic rat crura. These results may be important in understanding the pathogenesis of diabetes-related ED and also in providing better strategies for management of this disease.  相似文献   
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号