首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   4篇
  2021年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   36篇
  2012年   4篇
  2011年   7篇
  2010年   7篇
  2009年   5篇
  2008年   8篇
  2007年   5篇
  2006年   9篇
  2005年   17篇
  2004年   18篇
  2003年   14篇
  2002年   18篇
  2001年   8篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1957年   1篇
排序方式: 共有275条查询结果,搜索用时 31 毫秒
31.
Ester compounds consisting of ferulic acid and myo-inositol, obtained from rice bran, were synthesized. The inhibitory effects of these feruloyl-myo-inositols on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced superoxide (O2-) generation were examined using differentiated HL-60 cells. Among the derivatives tested, only 3,4,5,6-tetra-O-acetyl-1,2-di-O-[3-(4'-acetoxy-3'-methoxyphenyl)-2-pr openoyl]-myo-inositol (3) showed a distinct inhibitory activity.  相似文献   
32.
33.
A strain of Mycoplasma hominis lacking a major membrane protein of 120 kDa was isolated from a Vero cell culture. This strain showed very slow growth rate and formed nipple-less colonies on agar medium.  相似文献   
34.
Extracts from the cotyledons of seedlings of Pharbitis nil strain‘Violet’ cultured at low temperature, which inducestheir flowering even in continuous light, with or without precedentexposure to high-intensity light, which shortens the periodof low temperature required for flowering, were analyzed byHPLC for substances correlating with the flower-inducing process.The content of two phenylpropanoids were found to increase duringthe low-temperature, and were identified as 3-O-feruloylquinicacid and dehydrodiconiferyl alcohol-13-O-ß-D-glucoside.The increase was more rapid in the cotyledons exposed to high-intensitylight before the low-temperature. This suggests that the accumulationof these compounds is correlated to the promotive effect ofhigh-intensity light on the flower-induction by low temperature. (Received March 7, 1994; Accepted April 2, 1994)  相似文献   
35.
36.
The influence of infrared (IR) radiation on the viability and heat-activation of Bacillus subtilis spores, suspended in phosphate-buffered saline, was investigated. Two types of IR heaters with different spectral distributions were used. Near-infrared (NIR) and far-infrared (FIR) heaters with main wavelengths of approximately 1 μm and 3–6 μm, respectively, were utilized. Although both irradiation treatments decreased the number of B. subtilis colonies at a bulk temperature of approximately 75 °C, the mode of action was clearly different. In the case of the NIR heater, the number of colony-counts decreased gradually. In contrast, use of the FIR heater resulted in heat activation of the spores during the early stage of irradiation at a low bulk temperature (40–60 °C) over several minutes, followed by a decrease in the number of colonies. Consequently, FIR irradiation inactivated 90% of B. subtilis spores more effectively as compared to NIR irradiation for 20 min with a suspension volume of 20 ml and irradiation energy of 7.57 kW m?2. Spore exposure to FIR irradiation accelerated their germination rate in nutrient broth; however, this was not true for treatment with the NIR heater. The absorption IR spectrum of B. subtilis spores indicated that FIR radiation was absorbed easily by the spore cell components and might activate the bioactive substances involved in germination. Even at the same irradiation energy, the influence of infrared radiation on spore germination was dependent on the IR spectral distribution. Bacterial spores undergoing germination lose their resistance to stressors, such as heat, chemicals and ultraviolet rays. FIR heating promotes heat activation and germination, thereby producing vegetative cells that are more susceptible to other killing methods, enabling the killing of bacterial spores at lower stress without product damage.  相似文献   
37.
38.
39.
Recent studies have suggested the possibility that nocturnal light exposure affects many biological processes in rodents, especially the circadian rhythm, an endogenous oscillation of approximately 24 h. However, there is still insufficient information about the physiological effects of nocturnal light exposure. In this study, we examined the changes in gene expression and serum levels of plasminogen activator inhibitor-1 (PAI-1), a major component of the fibrinolytic system that shows typical circadian rhythmicity, in C3H/He mice. Zeitgeber time (ZT) was assessed with reference to the onset of light period (ZT0). Exposure to fluorescent light (70 lux) for 1 h in the dark period (ZT14) caused a significant increase in hepatic Pai-1 gene expression at ZT16. Serum PAI-1 levels also tended to increase, albeit not significantly. Expression levels of the typical clock genes Bmal1, Clock, and Per1 were significantly increased at ZT21, ZT16, and ZT18, respectively. Exposure to nocturnal light significantly increased plasma adrenalin levels. The effects of nocturnal light exposure on Pai-1 expression disappeared in adrenalectomized mice, although the changes in clock genes were still apparent. In conclusion, our results suggest that nocturnal light exposure, even for 1 h, alters hepatic Pai-1 gene expression by stimulating the adrenal pathway. Adrenalin secreted from the adrenal gland may be an important signaling mediator of the change in Pai-1 expression in response to nocturnal light exposure.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号