首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10307篇
  免费   591篇
  国内免费   31篇
  2024年   16篇
  2023年   105篇
  2022年   257篇
  2021年   544篇
  2020年   338篇
  2019年   426篇
  2018年   458篇
  2017年   329篇
  2016年   469篇
  2015年   531篇
  2014年   634篇
  2013年   810篇
  2012年   850篇
  2011年   731篇
  2010年   441篇
  2009年   357篇
  2008年   450篇
  2007年   451篇
  2006年   396篇
  2005年   389篇
  2004年   303篇
  2003年   256篇
  2002年   229篇
  2001年   114篇
  2000年   100篇
  1999年   83篇
  1998年   60篇
  1997年   31篇
  1996年   36篇
  1995年   42篇
  1994年   26篇
  1993年   30篇
  1992年   48篇
  1991年   46篇
  1990年   50篇
  1989年   42篇
  1988年   47篇
  1987年   35篇
  1986年   33篇
  1985年   40篇
  1984年   35篇
  1983年   27篇
  1982年   21篇
  1981年   26篇
  1980年   13篇
  1979年   16篇
  1978年   19篇
  1977年   14篇
  1976年   22篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
932.
During nuclear DNA replication, proofreading-deficient DNA polymerase α (Pol α) initiates Okazaki fragment synthesis with lower fidelity than bulk replication by proofreading-proficient Pol δ or Pol ε. Here, we provide evidence that the exonuclease activity of mammalian flap endonuclease (FEN1) excises Pol α replication errors in a MutSα-dependent, MutLα-independent mismatch repair process we call Pol α-segment error editing (AEE). We show that MSH2 interacts with FEN1 and facilitates its nuclease activity to remove mismatches near the 5′ ends of DNA substrates. Mouse cells and mice encoding FEN1 mutations display AEE deficiency, a strong mutator phenotype, enhanced cellular transformation, and increased cancer susceptibility. The results identify a novel role for FEN1 in a specialized mismatch repair pathway and a new cancer etiological mechanism.  相似文献   
933.
Reconstructing a tree of life by inferring evolutionary history is an important focus of evolutionary biology. Phylogenetic reconstructions also provide useful information for a range of scientific disciplines such as botany, zoology, phylogeography, archaeology and biological anthropology. Until the development of protein and DNA sequencing techniques in the 1960s and 1970s, phylogenetic reconstructions were based on fossil records and comparative morphological/physiological analyses. Since then, progress in molecular phylogenetics has compensated for some of the shortcomings of phenotype-based comparisons. Comparisons at the molecular level increase the accuracy of phylogenetic inference because there is no environmental influence on DNA/peptide sequences and evaluation of sequence similarity is not subjective. While the number of morphological/physiological characters that are sufficiently conserved for phylogenetic inference is limited, molecular data provide a large number of datapoints and enable comparisons from diverse taxa. Over the last 20 years, developments in molecular phylogenetics have greatly contributed to our understanding of plant evolutionary relationships. Regions in the plant nuclear and organellar genomes that are optimal for phylogenetic inference have been determined and recent advances in DNA sequencing techniques have enabled comparisons at the whole genome level. Sequences from the nuclear and organellar genomes of thousands of plant species are readily available in public databases, enabling researchers without access to molecular biology tools to investigate phylogenetic relationships by sequence comparisons using the appropriate nucleotide substitution models and tree building algorithms. In the present review, the statistical models and algorithms used to reconstruct phylogenetic trees are introduced and advances in the exploration and utilization of plant genomes for molecular phylogenetic analyses are discussed.  相似文献   
934.
935.
The Mutation‐Minimization Method (MuMi) to study the local response of proteins to point mutations has been introduced here. The heat shock protein Hsp70 as the test system since it displays features that have been studied in great detail has been used here. It has many conserved residues, serves several different functions on each of its domains, and displays interdomain allostery. For the analysis of spatial arrangement of residues within the protein, the network properties of the wild type (WT) protein as well as its all single alanine residue mutants using MuMi has been investigated. The measures to express the amount of change from the WT structure upon mutation and compare these deviations to find potential critical sites have been proposed. The functional significance of the potential sites to the parameter that uncovers them has been mapped. It was found that sites directly involved in binding were sensitive to mutations and were characterized by large displacements. On the other hand, sites that steer large conformational changes typically had increased reachability upon alanine mutations occurring elsewhere in the protein. Finally, residues that control communication within and between domains reside on the largest number of paths connecting pairs of residues in the protein. Proteins 2015; 83:2077–2090. © 2015 Wiley Periodicals, Inc.  相似文献   
936.
Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha‐amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha‐amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha‐amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha‐amylase surface in domain B. This domain shows differences in various alpha‐amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
937.
938.
The 13C‐labeling patterns in glutamate and glutamine from brain tissue are quite different after infusion of a mixture of 13C‐enriched glucose and acetate. Two processes contribute to this observation, oxidation of acetate by astrocytes but not neurons, and preferential incorporation of α‐ketoglutarate into glutamate in neurons, and incorporation of α‐ketoglutarate into glutamine in astrocytes. The acetate:glucose ratio, introduced previously for analysis of a single 13C NMR spectrum, provides a useful index of acetate and glucose oxidation in the brain tissue. However, quantitation of relative substrate oxidation at the cell compartment level has not been reported. A simple mathematical method is presented to quantify the ratio of acetate‐to‐glucose oxidation in astrocytes, based on the standard assumption that neurons do not oxidize acetate. Mice were infused with [1,2‐13C]acetate and [1,6‐13C]glucose, and proton decoupled 13C NMR spectra of cortex extracts were acquired. A fit of those spectra to the model indicated that 13C‐labeled acetate and glucose contributed approximately equally to acetyl‐CoA (0.96) in astrocytes. As this method relies on a single 13C NMR spectrum, it can be readily applied to multiple physiologic and pathologic conditions.

  相似文献   

939.
The blockade of tumor necrosis factor (TNF) by etanercept, a soluble version of the human TNF receptor 2 (hTNFR2), is a well established strategy to inhibit adverse TNF-mediated inflammatory responses in the clinic. A similar strategy is employed by poxviruses, encoding four viral TNF decoy receptor homologues (vTNFRs) named cytokine response modifier B (CrmB), CrmC, CrmD, and CrmE. These vTNFRs are differentially expressed by poxviral species, suggesting distinct immunomodulatory properties. Whereas the human variola virus and mouse ectromelia virus encode one vTNFR, the broad host range cowpox virus encodes all vTNFRs. We report the first comprehensive study of the functional and binding properties of these four vTNFRs, providing an explanation for their expression profile among different poxviruses. In addition, the vTNFRs activities were compared with the hTNFR2 used in the clinic. Interestingly, CrmB from variola virus, the causative agent of smallpox, is the most potent TNFR of those tested here including hTNFR2. Furthermore, we demonstrate a new immunomodulatory activity of vTNFRs, showing that CrmB and CrmD also inhibit the activity of lymphotoxin β. Similarly, we report for the first time that the hTNFR2 blocks the biological activity of lymphotoxin β. The characterization of vTNFRs optimized during virus-host evolution to modulate the host immune response provides relevant information about their potential role in pathogenesis and may be used to improve anti-inflammatory therapies based on soluble decoy TNFRs.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号