首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   668篇
  免费   53篇
  国内免费   1篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   4篇
  2018年   3篇
  2017年   10篇
  2016年   12篇
  2015年   16篇
  2014年   24篇
  2013年   35篇
  2012年   30篇
  2011年   27篇
  2010年   22篇
  2009年   17篇
  2008年   34篇
  2007年   29篇
  2006年   32篇
  2005年   41篇
  2004年   35篇
  2003年   33篇
  2002年   35篇
  2001年   27篇
  2000年   31篇
  1999年   15篇
  1998年   17篇
  1997年   19篇
  1996年   11篇
  1995年   15篇
  1994年   5篇
  1993年   4篇
  1992年   16篇
  1991年   10篇
  1990年   7篇
  1989年   14篇
  1988年   11篇
  1987年   9篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   6篇
  1982年   6篇
  1981年   4篇
  1980年   7篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   3篇
  1966年   2篇
  1965年   1篇
排序方式: 共有722条查询结果,搜索用时 15 毫秒
81.
In the brains of Alzheimer's disease patients, the tau protein dissociates from the axonal microtubule and abnormally aggregates to form a paired helical filament (PHF). One of the priorities in Alzheimer research is to clarify the mechanism of PHF formation. Although several reports on the regulation of tau assembly have been published, it is not yet clear whether in vivo PHFs are composed of beta-structures or alpha-helices. Since the four-repeat microtubule-binding domain (4RMBD) of the tau protein has been considered to play an essential role in PHF formation, its heparin-induced assembly propensity was investigated by the thioflavin fluorescence method to clarify what conformation is most preferred for the assembly. We analyzed the assembly propensity of 4RMBD in Tris-HCl buffer with different trifluoroethanol (TFE) contents, because TFE reversibly induces the transition of the random structure to the alpha-helical structure in an aqueous solution. Consequently, it was observed that the 4RMBD assembly is most significantly favored to proceed in the 10-30% TFE solution, the concentration of which corresponds to the activated transition state of 4RMBD from a random structure to an alpha-helical structure, as determined from the circular dichroism (CD) spectral changes. Since such an assembly does not occur in a buffer containing TFE of < 10% or > 40%, the intermediate conformation between the random and alpha-helical structures could be most responsible for the PHF formation of 4RMBD. This is the first report to clarify that the non-native alpha-helical intermediate in transition from random coil is directly associated with filament formation at the start of PHF formation.  相似文献   
82.
VEGF-KDR/Flk-1 signal utilizes the phospholipase C-gamma-protein kinase C (PKC)-Raf-MEK-ERK pathway as the major signaling pathway to induce gene expression and cPLA2 phosphorylation. However, the spatio-temporal activation of a specific PKC isoform induced by VEGF-KDR signal has not been clarified. We used HEK293T (human embryonic kidney) cells expressing transiently KDR to examine the activation mechanism of PKC. PKC specific inhibitors and human PKCdelta knock-down using siRNA method showed that PKCdelta played an important role in VEGF-KDR-induced ERK activation. Myristoylated alanine-rich C-kinase substrate (MARCKS) translocates from the plasma membrane to the cytoplasm depending upon phosphorylation by PKC. Translocation of MARCKS-GFP induced by VEGF-KDR stimulus was blocked by rottlerin, a PKCdelta specific inhibitor, or human PKCdelta siRNA. VEGF-KDR stimulation did not induce ERK phosphorylation in human PKCdelta-knockdown HEK293T cells, but co-expression of rat PKCdelta-GFP recovered the ERK phosphorylation. Y311/332F mutant of rat PKCdelta-GFP which cannot be activated by tyrosine-phosphorylation but activated by DAG recovered the ERK phosphorylation, while C1B-deletion mutant of rat PKCdelta-GFP, which can be activated by tyrosine-phosphorylation but not by DAG, failed to recover the ERK phosphorylation in human PKCdelta-knockdown HEK293T cell. These results indicate that PKCdelta is involved in VEGF-KDR-induced ERK activation via C1B domain.  相似文献   
83.
LGP2 is an important intracellular receptor that recognizes viral RNAs in innate immunity. To understand the mechanism of viral RNA recognition, we cloned an LGP2 cDNA and gene in Japanese flounder (Paralichthys olivaceus). Viral hemorrhagic septicemia virus-induced expressions of LGP2 mRNA were evaluated in vivo and in vitro by quantitative real-time PCR (Q-PCR) using primers based on the clone sequences. The expression of LGP2 mRNA in the kidney dramatically increased at 3 d postinfection. The expression of LGP2 mRNA also increased in the head kidney leukocytes stimulated with artificial dsRNA (polyinosin-polycytidylic acid) in vitro. To evaluate the antiviral activity of the flounder LGP2, three expression constructs containing pcDNA4-LGP2 (full-length), pcDNA4-LGP2ΔRD (regulatory domain deleted), and pcDNA4-Empty (as a negative control) were transfected into the hirame (flounder) natural embryo (hirame natural embryo) cell line. Forty-eight hours after transfection, the transfected cells were infected with ssRNA viruses, viral hemorrhagic septicemia virus, or hirame rhabdovirus. The cytopathic effects of the viruses were delayed by the overexpression of Japanese flounder LGP2. The Q-PCR demonstrated that mRNA expression levels of type I IFN and IFN-inducible genes (Mx and ISG15) in the hirame natural embryo cells overexpressing LGP2 were increased by polyinosin-polycytidylic acid and viral infections. These results suggest that Japanese flounder LGP2 plays an important role in the recognition of both viral ssRNA and dsRNA to induce the antiviral activity by the production of IFN-stimulated proteins.  相似文献   
84.
A leaf disease similar to frosty mildew disease caused by Mycopappus species was detected on the leaves of Crataegus chlorosarca in Tomakomai, Hokkaido Prefecture. From morphological observations and gene analyses of rDNA-ITS, the fungus was identified as M. alni, which causes leaf blight disease on Alnus spp., Betula spp., and a Pyrus sp. in North America and Turkey. This is the first report of M. alni in Japan and Crataegus as its new host genus.  相似文献   
85.
Some Bence Jones proteins (BJPs) can display catalytic activity. Although the catalytic activity of BJPs might be associated with the pathogenesis of disease, this relationship has not yet been established. We tested the effects of seven BJPs on LLC-PK1 cells to assess their pathogenicity. Two out of the seven BJPs showed cytotoxic activity, as assessed by microscopic analysis, the WST method and TUNEL staining. Moreover, the cytotoxic BJPs were excreted by patients who presented with renal impairment. The cytotoxic BJPs displayed 20- to 40-fold higher catalytic activities (kcat of 3.5-2.2 min(-1)) in hydrolyzing a chromogenic substrate compared to the other BJPs. By treating the cytotoxic BJPs with diisopropylfluorophosphate, they lost not only their catalytic activity, but also the cytotoxic effects. These results indicate a direct link between cytotoxicity and the catalytic activity of the BJPs. The catalytic activity of BJPs contributes to the pathogenesis, as well as to development, of symptoms of multiple myeloma. Inhibition of the catalytic activity of BJPs may form the basis of a novel treatment for multiple myeloma patients with renal dysfunction.  相似文献   
86.
Acyl-lipid desaturases are enzymes that convert a C-C single bond into a C=C double bond in fatty acids that are esterified to membrane-bound glycerolipids. Four types of acyl-lipid desaturase, namely DesA, DesB, DesC, and DesD, acting at the Delta12, Delta15, Delta9, and Delta6 positions of fatty acids respectively, have been characterized in cyanobacteria. These enzymes are specific for fatty acids bound to the sn-1 position of glycerolipids. In the present study, we have cloned two putative genes for a Delta9 desaturase, designated desC1 and desC2, from Nostoc species. The desC1 gene is highly similar to the desC gene that encodes a Delta9 desaturase that acts on C18 fatty acids at the sn-1 position. Homologues of desC2 are found in genomes of cyanobacterial species in which Delta9-desaturated fatty acids are esterified to the sn-2 position. Heterologous expression of the desC2 gene in Synechocystis sp. PCC 6803, in which a saturated fatty acid is found at the sn-2 position, revealed that DesC2 could desaturate this fatty acid at the sn-2 position. These results suggest that the desC2 gene is a novel gene for a Delta9 acyl-lipid desaturase that acts on fatty acids esterified to the sn-2 position of glycerolipids.  相似文献   
87.
The basic biology of blood vascular endothelial cells has been well documented. However, little is known about that of lymphatic endothelial cells, despite their importance under normal and pathological conditions. The lack of a lymphatic endothelial cell line has hampered progress in this field. The objective of this study has been to establish and characterize lymphatic and venous endothelial cell lines derived from newly developed tsA58/EGFP transgenic rats harboring the temperature-sensitive simian virus 40 (SV40) large T-antigen and enhanced green fluorescent protein (EGFP). Endothelial cells were isolated from the transgenic rats by intraluminal enzymatic digestion. The cloned cell lines were named TR-LE (temperature-sensitive rat lymphatic endothelial cells from thoracic duct) and TR-BE (temperature-sensitive rat blood-vessel endothelial cells from inferior vena cava), respectively, and cultured on fibronectin-coated dishes in HuMedia-EG2 supplemented with 20% fetal bovine serum and Endothelial Mitogen at a permissive temperature, 33°C. A temperature shift to 37°C resulted in a decrease in proliferation with degradation of the large T-antigen and cleavage of poly (ADP-ribose) polymerase. TR-LE cells expressed lymphatic endothelial markers VEGFR-3 (vascular endothelial growth factor receptor), LYVE-1 (a lymphatic endothelial receptor), Prox-1 (a homeobox gene product), and podoplanin (a glomerular podocyte membrane mucoprotein), together with endothelial markers CD31, Tie-2, and VEGFR-2, whereas TR-BE cells expressed CD31, Tie-2, and VEGFR-2, but no lymphatic endothelial markers. Thus, these conditionally immortalized and EGFP-expressing lymphatic and vascular endothelial cell lines might represent an important tool for the study of endothelial cell functions in vitro.M. Matsuo and K. Koizumi contributed equally to this work. This study was supported in part by Grants-in-Aid for the 21st Century COE Program and for CLUSTER (Cooperative Link of Unique Science and Technology for Economy Revitalization) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.  相似文献   
88.
Ohtani T  Nakamura T  Toda K  Furukawa F 《FEBS letters》2006,580(6):1597-1600
Cyclophosphamide (CPA) is one of the therapeutic agents for systemic inflammatory disorders. In murine dermal endothelial cells (F-2), 4-hydroxycyclophosphamide (4-HC), which is active metabolite of CPA, enhanced TNF-alpha-induced DNA fragmentation. In addition, 4-HC was shown to elevate TNF-alpha-induced caspase-3 activation. Caspase-8 activation was identified by the treatment of TNF-alpha, whereas 4-HC was no effect. In contrast, only when treated with 4-HC, caspase-9 activation and the increase in the intracellular expression of Bax were detected. These results suggest that CPA may sensitize endothelial cells to TNF-alpha-induced apoptosis through a mitochondria-dependent pathway and clinically may contribute to the limitation of inflammatory process.  相似文献   
89.
90.
The distribution and colonization levels of the altered Schaedler flora (ASF) in their natural hosts are poorly understood. Intestinal colonization levels of the eight ASF strains in outbred Swiss Webster mice with or without Helicobacter hepaticus infection were characterized by real-time quantitative PCR. All ASF strains were detected in the cecum and colon, but some strains displayed significant variation in colonization levels with host age, gender, and H. hepaticus infection status.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号