首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2225篇
  免费   141篇
  国内免费   3篇
  2369篇
  2022年   9篇
  2021年   14篇
  2020年   14篇
  2019年   15篇
  2018年   27篇
  2017年   27篇
  2016年   50篇
  2015年   48篇
  2014年   71篇
  2013年   114篇
  2012年   99篇
  2011年   96篇
  2010年   66篇
  2009年   72篇
  2008年   120篇
  2007年   109篇
  2006年   119篇
  2005年   125篇
  2004年   137篇
  2003年   102篇
  2002年   120篇
  2001年   96篇
  2000年   82篇
  1999年   67篇
  1998年   23篇
  1997年   24篇
  1996年   13篇
  1995年   12篇
  1994年   11篇
  1993年   27篇
  1992年   62篇
  1991年   36篇
  1990年   31篇
  1989年   29篇
  1988年   27篇
  1987年   26篇
  1986年   30篇
  1985年   30篇
  1984年   19篇
  1983年   13篇
  1982年   12篇
  1981年   13篇
  1980年   12篇
  1979年   18篇
  1978年   16篇
  1976年   10篇
  1975年   12篇
  1974年   12篇
  1972年   10篇
  1968年   10篇
排序方式: 共有2369条查询结果,搜索用时 15 毫秒
101.
Coordinated regulation of inductive events, both spatially and temporally, during animal development ensures that tissues are induced at their specific positions within the embryo. The ascidian brain is induced in cells at the anterior edge of the animal hemisphere by fibroblast growth factor (FGF) signals secreted from vegetal cells. To clarify how this process is spatially regulated, we first identified the sources of the FGF signal by examining the expression of brain markers Hr-Otx and Hr-ETR-1 in embryos in which FGF signaling is locally inhibited by injecting individual blastomeres with morpholino oligonucleotide against Hr-FGF9/16/20, which encodes an endogenous brain inducer. The blastomeres identified as the inducing sources are A5.1 and A5.2 at the 16-cell stage and A6.2 and A6.4 at the 24-cell stage, which are juxtaposed with brain precursors at the anterior periphery of the embryo at the respective stages. We also showed that all the cells of the animal hemisphere are capable of expressing Hr-Otx in response to the FGF signal. These results suggest that the position of inducers, rather than competence, plays an important role in determining which animal cells are induced to become brain tissues during ascidian embryogenesis. This situation in brain induction contrasts with that in mesoderm induction, where the positions at which the notochord and mesenchyme are induced are determined mainly by intrinsic competence factors that are inherited by signal-receiving cells.  相似文献   
102.
Chymase is an important enzyme for the generation of angiotensin (Ang) II and in the activation of transforming growth factor (TGF)-beta1. Therefore, chymase may be involved in the hemodialysis access dysfunction, which is caused by intimal hyperplasia that occurs after polytetrafluoroethylene (PTFE) graft implantations. Bilateral U-shaped PTFE grafts were placed between the femoral vein and artery in dogs. Chymase inhibitor (NK3201, 1 mg/kg per day, p.o.) treatments were initiated 3 days before the operation. After the implantation, the stenosis by neointima proliferation was most frequently observed in the venous side of the PTFE grafts. In the hyperplastic neointima, myofibroblasts were the main cellular components. On the other hand, fibroblasts only occupied cellular components in a much smaller proportion in the neointima. However, these cells seem to be rich in the properties of proliferation and migration. After PTFE graft implantations, extensive accumulations of chymase-positive mast cells were found mainly in the tissue surrounding the grafts. The Ang II- and TGF-beta-positive cells were found in an adjacent section that was in close proximity to the chymase-positive cells. In contrast, the AT(1) receptors, as well as TGF-beta type II receptors, were expressed either in the neointima or in the outside adventitia of the PTFE grafts. Chymase inhibitor treatment resulted in a reduction of chymase, Ang II and TGF-beta1 expression, leading to a significant inhibition of neointimal formation. These findings indicating that an increase of chymase via promoting Ang II and TGF-beta1 generation plays a pivotal role in the neointimal formation after the implantation of PTFE grafts and also suggesting that chymase inhibition may be a new strategy that can be used to prevent PTFE graft dysfunctions in clinical settings.  相似文献   
103.
Src kinase activity is essential for osteoclast function   总被引:21,自引:0,他引:21  
Deletion of the c-src gene impairs osteoclast bone resorbing activity, causing osteopetrosis. Although it has been concluded that restoring only the Src adaptor function at least partly rescues the cell attachment and skeletal phenotypes, the contribution of Src kinase activity remains controversial. Src forms a complex with Pyk2 and Cbl after adhesion-induced stimulation of alpha(V)beta(3) integrin. To demonstrate the importance of the Pyk2-Src association in osteoclasts and to distinguish the contributions of the Src adaptor and kinase activities in cytoskeletal organization and osteoclast function, we expressed mutants of Src and Pyk2 in osteoclasts using adenovirus vectors. Eliminating the Src-binding site on Pyk2 (Pyk2(Y402F)) markedly inhibited bone resorption by osteoclast-like cells, whereas kinase-dead Pyk2 had little effect. Kinase-dead Src, unlike kinase-dead Pyk2, markedly inhibited the bone-resorbing activity of wild type osteoclasts and failed to significantly restore bone-resorbing activity to Src(-/-) osteoclast-like cells. Activation of Src kinase by overexpressing kinase-dead Csk failed to reverse the inhibitory effect of Pyk2(Y402F), suggesting that osteoclastic bone resorption requires both c-Src kinase activity and the targeting of Src kinase by Pyk2. Src-catalyzed phosphorylation of Cbl on Tyr-731 is reported to induce the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function. Expressing the Cbl(Y731F) mutant in osteoclasts markedly reduced their bone resorbing activity, suggesting that phosphorylation of Cbl(Y731) and the subsequent recruitment and activation of phosphatidylinositol 3-kinase may be critical signaling events downstream of Src in osteoclasts.  相似文献   
104.
Ganglioside GM1 has been considered to have a neurotrophic factor-like activity. To analyze the effects of endogenously generated GM1, the rat pheochromocytoma cell line PC12 was transfected with the GM1/GD1b/GA1 synthase gene and showed increased expression levels of GM1. To our surprise, GM1+-transfectant cells (GM1+ cells) showed no neurite formation after stimulation with nerve growth factor (NGF). Autophosphorylation of NGF receptor TrkA and activation of ERK1/2 after NGF treatment were scarcely detected in GM1+ cells. Binding of 125I-NGF to PC12 cells was almost equivalent between GM1+ cells and controls. However, dimer formation of TrkA upon NGF treatment was markedly suppressed in GM1+ cells in both cross-linking analysis with Bis(sulfosuccinimidyl)suberate 3 and 125I-NGF binding assay. The sucrose density gradient fractionation of the cell lysate revealed that TrkA primarily located in the lipid raft fraction moved to the non-raft fraction in GM1+ cells. p75NTR and Ras also moved from the raft to non-raft fraction in GM1+ cells, whereas flotillin and GM1 persistently resided in the lipid raft. TrkA kinase activity was differentially regulated when GM1 was added to the kinase assay system in vitro, suggesting suppressive/enhancing effects of GM1 on NGF signals based on the concentration. Measurement of fluorescence recovery after photobleaching revealed that the membrane fluidity was reduced in GM1+ cells. These results suggested that overexpressed GM1 suppresses the differentiation signals mediated by NGF/TrkA by modulating the properties of the lipid raft and the intracellular localization of NGF receptors and relevant signaling molecules.  相似文献   
105.
106.
The molecular mechanism for the transition from cardiac hypertrophy, an adaptive response to biomechanical stress, to heart failure is poorly understood. The mitogen-activated protein kinase p38alpha is a key component of stress response pathways in various types of cells. In this study, we attempted to explore the in vivo physiological functions of p38alpha in hearts. First, we generated mice with floxed p38alpha alleles and crossbred them with mice expressing the Cre recombinase under the control of the alpha-myosin heavy-chain promoter to obtain cardiac-specific p38alpha knockout mice. These cardiac-specific p38alpha knockout mice were born normally, developed to adulthood, were fertile, exhibited a normal life span, and displayed normal global cardiac structure and function. In response to pressure overload to the left ventricle, they developed significant levels of cardiac hypertrophy, as seen in controls, but also developed cardiac dysfunction and heart dilatation. This abnormal response to pressure overload was accompanied by massive cardiac fibrosis and the appearance of apoptotic cardiomyocytes. These results demonstrate that p38alpha plays a critical role in the cardiomyocyte survival pathway in response to pressure overload, while cardiac hypertrophic growth is unaffected despite its dramatic down-regulation.  相似文献   
107.
Female-to-male hemopoietic stem cell transplantation (HSCT) elicits T cell responses against male-specific minor histocompatibility (H-Y) Ags encoded by the Y chromosome. All previously identified H-Y Ags are encoded by conventional open reading frames, but we report in this study the identification of a novel H-Y Ag encoded in the 5'-untranslated region of the TMSB4Y gene. An HLA-A*3303-restricted CD8(+) CTL clone was isolated from a male patient after an HSCT from his HLA-identical sister. Using a panel of cell lines carrying Y chromosome terminal deletions, a narrow region controlling the susceptibility of these target cells to CTL recognition was localized. Minigene transfection and epitope reconstitution assays identified an 11-mer peptide, EVLLRPGLHFR, designated TMSB4Y/A33, whose first amino acid was located 405 bp upstream of the TMSB4Y initiation codon. Analysis of the precursor frequency of CTL specific for recipient minor histocompatibility Ags in post-HSCT peripheral blood T cells revealed that a significant fraction of the total donor CTL response in this patient was directed against the TMSB4Y epitope. Tetramer analysis continued to detect TMSB4Y/A33-specific CD8(+) T cells at least up to 700 days post-HSCT. This finding underscores the in vivo immunological relevance of minor histocompatibility Ags derived from unconventional open reading frame products.  相似文献   
108.
109.
Chemical forms of selenium for cancer prevention.   总被引:3,自引:0,他引:3  
Cancer is becoming an increasingly significant disease worldwide. Currently, more than 7 million people die each year from cancer. With the existing knowledge, at least one-third of worldwide cancer cases could be prevented. Searching for naturally occurring agents in routinely consumed foods that may inhibit cancer development, although challenging, constitutes a valuable and plausible approach to the control and prevention of cancer. To date, the use of the micronutrient selenium (Se) in human clinical trials is limited, but the outcome indicates that Se is among the most promising agents. Although it is convenient to describe the effects of Se in terms of the element, it must always be kept in mind that the chemical form of Se and the dose are determinants of its biological activities. Hyphenated techniques based on coupling chromatographic separation with inductively coupled plasma mass spectrometric (ICP-MS) detection are now established as the most realistic and potent analytical tools available for real-life speciation analysis. These speciation investigations provide evidence that the Se compounds, which can generate monomethylated Se (e.g., Se-methylselenocysteine and methylseleninic acid), are more efficacious than other Se compounds because of their chemoprevention activity.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号