首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   551篇
  免费   19篇
  2022年   6篇
  2021年   11篇
  2020年   7篇
  2019年   7篇
  2018年   5篇
  2017年   9篇
  2016年   10篇
  2015年   24篇
  2014年   16篇
  2013年   22篇
  2012年   31篇
  2011年   32篇
  2010年   23篇
  2009年   15篇
  2008年   31篇
  2007年   33篇
  2006年   23篇
  2005年   18篇
  2004年   16篇
  2003年   30篇
  2002年   20篇
  2001年   11篇
  2000年   22篇
  1999年   21篇
  1998年   11篇
  1997年   4篇
  1996年   15篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   11篇
  1991年   11篇
  1990年   9篇
  1989年   5篇
  1988年   12篇
  1987年   8篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1975年   3篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有570条查询结果,搜索用时 46 毫秒
21.
22.
The rapid development of the concept of the “Internet of Things (IoT)” requires wearable devices with maintenance‐free batteries, and thermoelectric energy conversion based on large‐area flexible materials has attracted much attention. Among large‐area flexible materials, 2D materials, such as graphene and related materials, are promising for thermoelectric applications due to their excellent transport properties and large power factors. In this Review, both single‐crystalline and polycrystalline 2D materials are surveyed using the experimental reports on thermoelectric devices of graphene, black phosphorus, transition metal dichalcogenides, and other 2D materials. In particular, their carrier‐density dependent thermoelectric properties and power factors maximized by Fermi level tuning techniques are focused. The comparison of the relevant performances between 2D materials and commonly used thermoelectric materials reveals the significantly enhanced power factors in 2D materials. Moreover, the current progress in thermoelectric module applications using large‐area 2D material thin films is summarized, which consequently offers great potential for the use of 2D materials in large‐area flexible thermoelectric device applications. Finally, important remaining issues and future perspectives, such as preparation methods, thermal transports, device designs, and promising effects in 2D materials, are discussed.  相似文献   
23.
Interspecific pollen transfer (IPT) often leads to reproductive interference. Although character displacement of reproductive traits in plants is often considered a consequence of reproductive interference, few studies have tested whether intraspecific variation in floral morphology changes the intensity of reproductive interference among pollinator-sharing plants. We investigated whether intraspecific variation in pistil length changes the proportion of IPT (interspecific pollen transfer) in sympatric populations of Clerodendrum trichotomum and C. izuinsulare on the two islands. On Toshima Island, C. izuinsulare flowers with shorter pistils were significantly less likely to receive C. trichotomum pollen, and there was a slight tendency for longer pistiles of C. trichotomum flowers to receive less C. izuinsulare pollen, suggesting that IPT has caused character displacement in pistil length in these congeneric plants. In contrast, we did not detect any relationship between pistil length and the proportion of IPT for the two species on Niijima Island. The discrepancy between the islands may reflect differences in pollinator assemblages.  相似文献   
24.
Given their sessile nature, land plants must use various mechanisms to manage dehydration under water‐deficit conditions. Osmostress‐induced activation of the SNF1‐related protein kinase 2 (SnRK2) family elicits physiological responses such as stomatal closure to protect plants during drought conditions. With the plant hormone ABA receptors [PYR (pyrabactin resistance)/PYL (pyrabactin resistance‐like)/RCAR (regulatory component of ABA receptors) proteins] and group A protein phosphatases, subclass III SnRK2 also constitutes a core signaling module for ABA, and osmostress triggers ABA accumulation. How SnRK2 is activated through ABA has been clarified, although its activation through osmostress remains unclear. Here, we show that Arabidopsis ABA and abiotic stress‐responsive Raf‐like kinases (AtARKs) of the B3 clade of the mitogen‐activated kinase kinase kinase (MAPKKK) family are crucial in SnRK2‐mediated osmostress responses. Disruption of AtARKs in Arabidopsis results in increased water loss from detached leaves because of impaired stomatal closure in response to osmostress. Our findings obtained in vitro and in planta have shown that AtARKs interact physically with SRK2E, a core factor for stomatal closure in response to drought. Furthermore, we show that AtARK phosphorylates S171 and S175 in the activation loop of SRK2E in vitro and that Atark mutants have defects in osmostress‐induced subclass III SnRK2 activity. Our findings identify a specific type of B3‐MAPKKKs as upstream kinases of subclass III SnRK2 in Arabidopsis. Taken together with earlier reports that ARK is an upstream kinase of SnRK2 in moss, an existing member of a basal land plant lineage, we propose that ARK/SnRK2 module is evolutionarily conserved across 400 million years of land plant evolution for conferring protection against drought.  相似文献   
25.
Osmotic adjustment plays a fundamental role in water stress responses and growth in plants; however, the molecular mechanisms governing this process are not fully understood. Here, we demonstrated that the KUP potassium transporter family plays important roles in this process, under the control of abscisic acid (ABA) and auxin. We generated Arabidopsis thaliana multiple mutants for K+ uptake transporter 6 (KUP6), KUP8, KUP2/SHORT HYPOCOTYL3, and an ABA-responsive potassium efflux channel, guard cell outward rectifying K+ channel (GORK). The triple mutants, kup268 and kup68 gork, exhibited enhanced cell expansion, suggesting that these KUPs negatively regulate turgor-dependent growth. Potassium uptake experiments using 86radioactive rubidium ion (86Rb+) in the mutants indicated that these KUPs might be involved in potassium efflux in Arabidopsis roots. The mutants showed increased auxin responses and decreased sensitivity to an auxin inhibitor (1-N-naphthylphthalamic acid) and ABA in lateral root growth. During water deficit stress, kup68 gork impaired ABA-mediated stomatal closing, and kup268 and kup68 gork decreased survival of drought stress. The protein kinase SNF1-related protein kinases 2E (SRK2E), a key component of ABA signaling, interacted with and phosphorylated KUP6, suggesting that KUP functions are regulated directly via an ABA signaling complex. We propose that the KUP6 subfamily transporters act as key factors in osmotic adjustment by balancing potassium homeostasis in cell growth and drought stress responses.  相似文献   
26.
DYT1 early-onset generalized torsion dystonia (DYT1 dystonia) is an inherited movement disorder caused by mutations in one allele of DYT1 (TOR1A), coding for torsinA. The most common mutation is a trinucleotide deletion (ΔGAG), which causes a deletion of a glutamic acid residue (ΔE) in the C-terminal region of torsinA. Although recent studies using cultured cells suggest that torsinA contributes to protein processing in the secretory pathway, endocytosis, and the stability of synaptic proteins, the nature of how this mutation affects synaptic transmission remains unclear. We previously reported that theta-burst-induced long-term potentiation (LTP) in the CA1 region of the hippocampal slice is not altered in Dyt1 ΔGAG heterozygous knock-in (KI) mice. Here, we examined short-term synaptic plasticity and synaptic transmission in the hippocampal slices. Field recordings in the hippocampal Schaffer collaterals (SC) pathway revealed significantly enhanced paired pulse ratios (PPRs) in Dyt1 ΔGAG heterozygous KI mice, suggesting an impaired synaptic vesicle release. Whole-cell recordings from the CA1 neurons showed that Dyt1 ΔGAG heterozygous KI mice exhibited normal miniature excitatory post-synaptic currents (mEPSC), suggesting that action-potential independent spontaneous pre-synaptic release was normal. On the other hand, there was a significant decrease in the frequency, but not amplitude or kinetics, of spontaneous excitatory post-synaptic currents (sEPSC) in Dyt1 ΔGAG heterozygous KI mice, suggesting that the action-potential dependent pre-synaptic release was impaired. Moreover, hippocampal torsinA was significantly reduced in Dyt1 ΔGAG heterozygous KI mice. Although the hippocampal slice model may not represent the neurons directly associated with dystonic symptoms, impaired release of neurotransmitters caused by partial dysfunction of torsinA in other brain regions may contribute to the pathophysiology of DYT1 dystonia.  相似文献   
27.
Drosophila melanogaster shows exquisite light sensitivity for modulation of circadian functions in vivo, yet the activities of the Drosophila circadian photopigment cryptochrome (CRY) have only been observed at high light levels. We studied intensity/duration parameters for light pulse induced circadian phase shifts under dim light conditions in vivo. Flies show far greater light sensitivity than previously appreciated, and show a surprising sensitivity increase with pulse duration, implying a process of photic integration active up to at least 6 hours. The CRY target timeless (TIM) shows dim light dependent degradation in circadian pacemaker neurons that parallels phase shift amplitude, indicating that integration occurs at this step, with the strongest effect in a single identified pacemaker neuron. Our findings indicate that CRY compensates for limited light sensitivity in vivo by photon integration over extraordinarily long times, and point to select circadian pacemaker neurons as having important roles.  相似文献   
28.
NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the “acidic/alternative” pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.  相似文献   
29.
30.
RNA interference (RNAi) is a common tool for analysis of gene function in both model and non-model insects, but it is becoming evident that RNAi efficiency varies considerably from species to species. We examined RNAi efficiency in larvae of the armyworm Mythimna separata (Walker) using multiple genes and tissues. First, we showed that five different target genes exhibited distinct tissue distribution patterns by quantitative determination of mRNA in total hemocytes, foregut, midgut, hindgut, Malpighian tubules and fat body: neuroglian mRNA was most abundant in fat body; inhibitor of apoptosis proteins mRNA was found to be ubiquitous; aquaporin 4 mRNA was most enriched in hindgut; cueball and prophenoloxidase 2 were mainly expressed in hemocytes. Second, we assessed sensitivity to gene silencing by double-strand RNA injection of these five genes in the six different tissues. We found that these genes generally showed refractoriness to double-strand RNA-mediated gene knockdown irrespective of the tissue tested. Finally, we demonstrated that appreciable gene knockdown was achieved at least in the adhering hemocyte fraction when larval isolated abdomen was prepared by ligation and subjected to dsRNA injection. Our study thus added detailed information on the refractoriness of larval tissues of a lepidopteran insect to gene silencing through RNAi and provided a new potential approach to improve RNAi efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号