首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1943篇
  免费   121篇
  国内免费   1篇
  2065篇
  2023年   9篇
  2022年   13篇
  2021年   26篇
  2020年   15篇
  2019年   25篇
  2018年   31篇
  2017年   30篇
  2016年   37篇
  2015年   47篇
  2014年   74篇
  2013年   126篇
  2012年   106篇
  2011年   100篇
  2010年   60篇
  2009年   59篇
  2008年   80篇
  2007年   107篇
  2006年   85篇
  2005年   77篇
  2004年   80篇
  2003年   80篇
  2002年   73篇
  2001年   53篇
  2000年   71篇
  1999年   44篇
  1998年   14篇
  1997年   14篇
  1996年   16篇
  1995年   16篇
  1993年   9篇
  1992年   46篇
  1991年   46篇
  1990年   45篇
  1989年   45篇
  1988年   44篇
  1987年   31篇
  1986年   24篇
  1985年   22篇
  1984年   18篇
  1983年   18篇
  1982年   18篇
  1981年   14篇
  1980年   14篇
  1979年   11篇
  1972年   6篇
  1971年   8篇
  1969年   9篇
  1968年   10篇
  1967年   6篇
  1966年   8篇
排序方式: 共有2065条查询结果,搜索用时 0 毫秒
981.
Hyperhomocysteinemia is a known risk factor of cardiovascular disease. Homocysteine has been also linked to inflammation in rheumatoid arthritis (RA). In this study, we investigated the relationship between plasma homocysteine levels and single nucleotide polymorphism (SNP) of the gene coding for methylenetetrahydrofolate reductase (MTHFR), an enzyme involved in the biosynthesis of homocysteine, and the correlation between the plasma homocysteine levels and generally used inflammatory markers (C-reactive protein, erythrocyte sedimentation rate and matrix metalloproteinase-3) in 96 Japanese patients with RA. Plasma homocysteine levels in patients with the MTHFR 677TT genotype were significantly higher than in those with the 677CC genotype (p < 0.05). In addition, plasma homocysteine levels were increased along with the elevation of general inflammatory markers. Therefore, we conclude that homocysteine might affect the inflammatory status of patients, and the MTHFR 677C>T SNP could be a predictive factor of hyperhomocysteinemia in patients with RA.  相似文献   
982.
We examined the contractile reactivity to 5-hydroxytryptamine (5-HT) in isolated human saphenous vein (SV), as a vascular conduit in coronary artery bypass grafting (CABG), harvested from patients with diabetes mellitus (DM) and non-DM (NDM). Vascular rings of endothelium-denuded SV were used for functional and biochemical experiments. The vasoconstrictions caused by 5-HT were significantly greater (hyperreactivity) in the DM group than in the NDM group. RhoA/ROCK pathway is activated by various G-protein-coupled receptor agonists and consequently induces phosphorylation of myosin phosphatase target subunit 1 (MYPT1), a subunit of myosin light chain phosphatase (MLCP), which inhibits MLCP activity. In the resting state of the vessels, total tissue protein levels of 5-HT2A receptor, 5-HT1B receptor, RhoA, ROCK1, and ROCK2 did not differ between NDM and DM groups. However, the total protein level of MYPT1 was significantly lower in the DM group than in the NDM group. Furthermore, the ratio of P(Thr696)-MYPT1 to total MYPT1 was significantly higher in the DM group than in the NDM group. These results suggest that the hyperreactivity to 5-HT in the SV smooth muscle of patients with DM is due to not only enhanced phosphorylation of MLCP but also defective protein level of MLCP. Thus, we reveal for the first time that the defective protein level of MLCP in the DM group can partially explain the poor patency of SV graft harvested from patients with DM.  相似文献   
983.
Malignant melanoma is one the most aggressive types of cancer and its incidence has gradually increased in the last years, accounting for about 75% of skin cancer deaths. This poor prognosis results from the tumor resistance to conventional drugs mainly by deregulation of apoptotic pathways. The aim of this work was to investigate the cell death mechanism induced by α-pinene and its therapeutic application. Our results demonstrated that α-pinene was able to induce apoptosis evidenced by early disruption of the mitochondrial potential, production of reactive oxygen species, increase in caspase-3 activity, heterochromatin aggregation, DNA fragmentation and exposure of phosphatidyl serine on the cell surface. Most importantly, this molecule was very effective in the treatment of experimental metastatic melanoma reducing the number of lung tumor nodules. This is the first report on the apoptotic and antimetastatic activity of isolated α-pinene.  相似文献   
984.
Extracellular signal-regulated kinases 1 and 2 (ERK1 and -2, respectively) play a critical role in regulating cell division and have been implicated in cancer. In addition to activation by MAPK/ERK kinases 1 and 2 (MEK1 and -2, respectively), certain mutants of ERK2 can be activated by autophosphorylation. To identify the mechanism of autoactivation, we have performed a series of molecular dynamics simulations of ERK1 and -2 in various stages of activation as well as the constitutively active Q103A, I84A, L73P, and R65S ERK2 mutants. Our simulations indicate the importance of domain closure for autoactivation and activity regulation, with that event occurring prior to folding of the activation lip and of loop L16. Results indicate that the second phosphorylation event, that of T183, disrupts hydrogen bonding involving D334, thereby allowing the kinase to lock into the active conformation. On the basis of the simulations, three predictions were made. G83A was suggested to impede activation; K162M was suggested to perturb the interface between the N- and C-domains leading to activation, and Q64C was hypothesized to stop folding of loop L16, thereby perturbing the homodimerization interface. Functional analysis of the mutants validated the predictions concerning the G83A and Q64C mutants. The K162M mutant did not autoactivate as predicted, however, which may be due to the location of the residue on the protein surface near the ED substrate docking domain.  相似文献   
985.
Bacillus subtilis is a representative Gram-positive bacterium. In aerobic conditions, this bacterium can generate an electrochemical potential across the membrane with aerobic respiration. Here, we developed the patch clamp method to analyze the respiratory chain in B. subtilis. First, we prepared giant protoplasts (GPs) from B. subtilis cells. Electron micrographs and fluorescent micrographs revealed that GPs of B. subtilis had a vacuole-like structure and that the intravacuolar area was completely separated from the cytoplasmic area. Acidification of the interior of the isolated and purified vacuole-like structure, due to H(+) translocation after the addition of NADH, revealed that they consisted of everted cytoplasmic membranes. We called these giant provacuoles (GVs) and again applied the patch clamp technique. When NADH was added as an electron donor for the respiratory system, a significant NADH-induced current was observed. Inhibition of KCN and 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) demonstrated that this current is certainly due to aerobic respiration in B. subtilis. This is the first step for more detailed analyses of respiratory chain in B. subtilis, especially H(+) translocation mechanism.  相似文献   
986.
Of all organs in mammals including humans, the brain has the most limited regenerative capacity after injury or damage. In spite of extensive efforts to treat ischemic/stroke injury of the brain, thus far no reliable therapeutic method has been developed. However, some molluscan species show remarkable brain regenerative ability and can achieve full functional recovery following injury. The terrestrial pulmonates are equipped with a highly developed olfactory center, called the procerebrum, which is involved in olfactory discrimination and odor-aversion learning. Recent studies revealed that the procerebrum of the land slug can spontaneously recover structurally and functionally relatively soon after injury. Surprisingly, no exogenous interventions are required for this reconstitutive repair. The neurogenesis continues in the procerebrum in adult slugs as in the hippocampus and the olfactory bulb of mammals, and the reconstitutive regeneration seems to be mediated by enhanced neurogenesis. In this review, we discuss the relationship between neurogenesis and the regenerative ability of the brain, and also the evolutionary origin of the brain structures in which adult neurogenesis has been observed.  相似文献   
987.
POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-α (TNF-α), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-α-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-κB) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-α in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-α-induced inhibition of osteoblast differentiation. These results suggest that TNF-α inhibits POEM expression through the NF-κB signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-α.  相似文献   
988.
A simple, small-scale, and high-throughput method for preparation of plant N-glycans for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS) is described. This method entailed the extraction of soluble proteins, pepsin digestion, release of N-glycans by glycopeptidase A, and a three-step chromatographic purification process using cation exchange, anion exchange, and graphitized carbon. Homemade minicolumns using commercially available filter unit devices were used for N-glycan purification steps. All purification steps were designed to be easy. Using this method, N-glycans from 10-mg leaf samples of different plant species and only 2 μg of pure horseradish peroxidase were successfully purified.  相似文献   
989.
Anemia generated from African trypanosome infection is considered an important symptom in humans and in domestic animals. In order to recover from anemia, the process of erythropoiesis is essential. Erythropoiesis is affected by erythropoietin (EPO), an erythropoietic hormone, supplying iron and inflammatory and proinflammatory cytokines. However, the role of these factors in erythropoiesis during African trypanosome infection remains unclear. In the present study, we analyze how erythropoiesis is altered in anemic Trypanosoma brucei brucei (interleukin-tat 1.4 strain [ILS])-infected rats. We report that the packed cell volume (PCV) of blood from ILS-infected rats was significantly lower 4 days after infection, whereas the number of reticulocytes, as an index of erythropoiesis, did not increase. The level of EPO mRNA in ILS-infected rats did not increase from the third day to the sixth day after infection, the same time that the PCV decreased. Kidney cells of uninfected rats cultured with ILS trypanosome strain for 8 hr in vitro decreased EPO mRNA levels. Treatment of both ILS and cobalt chloride mimicked hypoxia, which restrained the EPO-production-promoting effect of the cobalt. Messenger RNA levels of β-globin and transferrin receptor, as markers of erythropoiesis in the bone marrow, also decreased in ILS-infected rats. Levels of hepcidin mRNA, which controls the supply of iron to the marrow in liver, were increased in ILS-infected rats; however, the concentration of serum iron did not change. Furthermore, mRNA levels of interleukin-12, interferon-γ, tumor necrosis factor-α, and macrophage migration inhibitory factor in the spleen, factors that have the potential to restrain erythropoiesis in bone marrow, were elevated in the ILS-infected rats. These results suggest that ILS infection in rats affect erythropoiesis, which responds by decreasing EPO production and restraining its function in the bone marrow.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号